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1. INTRODUCTION

The development of nonlinear time series analysis has been advancing rapidly
~e+g+, Subba Rao and Gabr, 1984; Priestley, 1988; Tong, 1990; Brock, Hsieh,
and LeBaron, 1991; Granger and Teräsvirta, 1993; Tjøstheim, 1994; Teräsvirta,
Tjøstheim, and Granger, 1994; Terdik, 1999!+ In modern time series analysis,
one often considers the data generating process

Yt 5 g0~It21! 1 h0~It21!«t , t 5 0,61, + + + , (1.1)

whereIt21 is the information set available at timet 2 1 and$«t % is a sequence
of independently and identically distributed~i+i+d+! innovations+ Often, $«t %
has mean 0 and variance 1 such thatg0~It21! 5 E~Yt 6 It21! and h0

2~It21! 5
var~Yt 6 It21! almost surely~a.s.!. For various examples that belong to class~1+1!,
see, e+g+, Tong ~1990! and Granger and Teräsvirta~1993!+ It is also possible
that $«t % is an i+i+d+ nonnegative sequence withE~«t ! 5 1+ An example is the
autoregressive conditional duration~ACD! process introduced in Engle and
Russell ~1998! for irregularly spaced time series, where g0~I t21! 5 0 and
h0~It21! 5 E~Yt 6 It21! is the conditional duration of the nonnegative time dura-
tion process$Yt %+

Various models forg0~{! and h0~{! have been proposed in the literature+
Consider a model

Yt 5 g~It21,u! 1 h~It21,u!et ~u!, (1.2)

whereg~{,u! and h~{,u! are some known parametric specifications forg0~{!
andh0~{!, u [ Q is an unknown finite-dimensional parameter vector, and$et~u!%
is an unobservable series+ Specification~1+2! covers most commonly used linear
and nonlinear time series models+ Examples include ACD, autoregressive con-
ditional heteroskedasticity~ARCH!, autoregressive moving average~ARMA !,
bilinear, nonlinear moving average, Markov regime-switching, smooth transi-
tion, exponential, and threshold autoregressive models+Wheng~{,u! andh~{,u!
are correctly specified forg0~{! andh0~{!, i+e+, when there exists someu0 [ Q
such thatg~{, u0! 5 g0~{! and h~{, u0! 5 h0~{! a.s., the model standardized
error series$et~u0!% coincides with the true innovation series$«t % and therefore
is i+i+d+ In contrast, if g~{,u! is inadequate forg0~{! and0or h~{,u! is inade-
quate forh0~{!, i+e+, if there exists nou [ Q such thatg~{,u! 5 g0~{! and0or
h~{,u! 5 h0~{! a+s+, $et~u!% will be serially dependent for allu [ Q+ Conse-
quently, to test adequacy of model~1+2!, one can check whether there exists
someu0 [ Q such that$et~u0!% is i+i+d+ Tests for i+i+d+ rather than for white
noise are more suitable and useful in nonlinear time series analysis, in particu-
lar when higher order conditional moments or the conditional probability dis-
tribution are of interest~e+g+, Brock et al+, 1991; Brock, Dechert, Scheinkman,
and LeBaron, 1996, Christoffersen, 1998; Diebold, Gunther, and Tay, 1998;
Kim, Shephard, and Chib, 1998; Clement and Smith, 2000; Elerian, Chib, and
Shephard, 2001!+ See also an empirical application in Section 8+
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Because$et~u0!% is unobservable, one has to use the standardized estimated
residual

[et 5 @Yt 2 g~ ZIt21, Zu!#0h~ ZIt21, Zu!, t 5 1, + + + , n, (1.3)

where Zu is a consistent estimator ofu0 based on a random sample$Yt %t51
n of

sizen and ZIt is the observed information set available at periodt that may in-
volve certain initial values+ To construct an asymptotically valid test proce-
dure, it is important to examine whether and how the use of$ [et %t51

n rather than
$et [ et ~u0!%t51

n affects the limit distribution of a test statistic, besides its power
property~see Tjøstheim, 1996!+

Often, the information setIt21 consists of lagged variables$Yt2j , j . 0%+
Wheng0~It21! is linear in It21, Yt is called linear in conditional mean onIt21

~Lee,White, and Granger, 1993!+ If in addition h0~It21! 5 s a.s., $Yt % is called
completely linear inIt21 ~Granger, 2001; Granger and Lee, 1999!+ Assuming
h0~It21! 5 s a+s+ in an ARMA framework, Box and Pierce~1970! and Ljung
and Box~1978! propose a diagnostic test for an ARMA~ p0,q0! model:

BPL~ p! 5 n~n 1 2! (
j51

p

~n 2 j !21 [r2~ j ! d
&& xp2~ p01q0!

2 , p . p0 1 q0,

(1.4)

where [r~ j ! is the sample autocorrelation function of$ [et %t51
n , [et 5 Yt 2

g~ ZIt21, Zu!, and g~ ZIt21, Zu! is an estimated ARMA~ p0,q0! model+ Here, $ [et % is
the usual estimated residuals because no conditional variance estimation is
involved+ The degrees of freedom of the Box–Pierce–Ljung~BPL! test depend
on p0 1 q0, the number of the estimated parameters+ Hong ~1996! and Paparo-
ditis ~2000a, 2000b! propose spectrum-based diagnostic tests that generalize
the BPL~ p! test+

It has been pointed out for a long time~e+g+, Granger and Anderson, 1978;
Granger, 1983! that the Box–Pierce–Ljung test has no power against nonlinear
dependencies with zero autocorrelation, such as some bilinear and nonlinear
moving-average~MA ! processes+ Using the sample autocorrelation function of
squared residuals, McLeod and Li ~1983! suggest a test for linearity against
unspecified nonlinearity+ For a null ARMA~ p0,q0! model, the McLeod and Li
~1983! test statistic is

ML ~ p! 5 n~n 1 2! (
j51

p

~n 2 j !21 [r2
2~ j ! d

&& xp
2, (1.5)

where [r2~ j ! is the sample autocorrelation function of$ [et
2%t51

n and [et 5 Yt 2
g~ ZIt21, Zu!+ This test has good power against ARCH+ It also has power against
departures from linearity that have apparent ARCH structures+ The null limit
distribution of the test statistic is axp

2 distribution; the degrees of freedom need
not be adjusted when only an ARMA model is estimated+ As pointed out in
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Granger and Teräsvirta~1993!, ML ~ p! is asymptotically equivalent to the La-
grange multiplier test for ARCH of Engle~1982!+

When testing the adequacy of an ARCH0generalized autoregressive moving
average~GARCH! model, many researchers have applied the McLeod–Li test
to the squares of the estimated standardized residuals+1 Li and Mak~1994! show
that this procedure is misleading because its asymptotic distribution is not ax2

distribution if ML~ p! is applied to the residuals standardized by estimated
ARCH0GARCH models+ Li and Mak ~1994! propose corrected statistics+ In
fact, their test is asymptotically equivalent to the Lagrange multiplier test pre-
sented in Lundbergh and Teräsvirta~1998!, which is a test of the standardized
errors being i+i+d+ against the alternative that they follow an ARCH model+ Li
and Mak ~1994! also provide a simpler statistic when the fitted conditional
variance model is ARCH~r !+ For a null ARMA~ p0,q0!-ARCH~r ! model, the
simpler version of Li and Mak’s test statistic can be written as

LM ~ p, r ! 5 n~n 1 2! (
j5r11

p

~n 2 j !21 [r2
2~ j ! d

&& xp2r
2 , p . r, (1.6)

where [r2~ j ! is the sample autocorrelation function of$ [et
2%t51

n , [et 5
@Yt 2 g~ ZIt21, Zu!#0h~ ZIt21, Zu!, and h~ ZIt21, Zu! is an estimated ARCH~r ! model+
The null limit distribution depends onr, the order of the ARCH model+ When
other conditional variance models are estimated, the test statistic itself has to
be modified as suggested by Li and Mak~1994! or by Lundbergh and Teräs-
virta ~2002!+

Brock et al+ ~1991, 1996! propose a diagnostic test for model~1+2!, using
chaos theory:

BDS~m,d! 5 n102 @ ZCm~d! 2 ZC1~d!m#0 ZVm
102, (1.7)

where the sample correlation integral~cf+ Grassberger and Procaccia, 1983!

ZCm~d! 5
2

n~n 2 1! (
t5m11

n

(
s5m

t21

)
j50

m21

1~6 [et2j 2 [es2j 6 , d!

p
&& PF)

j50

m21

1~6et2j 2 es2j 6 , d!G[ Cm~d!, (1.8)

1~{! is an indicator function, m is the so-called embedding dimension, d is a
distance parameter, and ZVm is an asymptotic variance estimator+ The statistic
ZCm~d! measures the fraction of pairs of histories$ [et2j , [es2j % j50

m21 that are within
distanced of each other+ If [et and [es are close in value, so will be subsequent
pairs for a chaotic process but not for an i+i+d+ sequence+ Thus, BDS~m,d! is
expected to have good power against chaos+ In addition, it also has power against
a wide range of stochastic dependent processes+ To see this, observe that when
$et % is i+i+d+, we have
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Cm~d! 5 C1~d!m (1.9)

for all positive integersm and all distancesd . 0+ In other words, the correla-
tion integralCm~d! behaves like the characteristic function of a serial string in
the sense that the correlation integral of a serial string is the product of corre-
lation integrals of component substrings+ If Cm~d! Þ C1~d!m, there is evidence
against the i+i+d+ hypothesis, and BDS will gain power+2

As shown in Brock et al+ ~1991, Ch+ 2 and Appendix D!, BDS~m,d! has the
appealing “nuisance-parameter-free” property that anyn102-consistent param-
eter estimator Zu has no impact on its null limit distribution under a class of
conditional mean modelsg~{,u!+ This, together with good power against a wide
range of dependent alternatives, has made BDS~m,d! a convenient and power-
ful diagnostic tool for nonlinear time series models+ It has been recommended
by Brock et al+ ~1991! as a portmanteau lack of fit test for nonlinear time series
models in the same spirit as Box and Jenkins~1970, p+ 29! recommend Box–
Pierce–Ljung’s test for linear time series models+

Nevertheless, BDS~m,d! has certain features one might consider undesir-
able+ First, the “nuisance-parameter-free” property holds only under condi-
tional mean models but not under ARCH models~cf+ Brock et al+, 1991,
Appendix D!+ More generally, when conditional variance estimation is in-
volved, the limit distribution of BDS~m,d! depends on the nature of estimator
Zu, and how to modify the test statistic is unknown+3 This is troublesome in

practice+ Second, although serial independence implies~1+8!, the converse is
not true ~Brock et al+, 1991, p+ 47!+ There are examples in which$et % is not
i+i+d+ but ~1+8! holds+ For such alternatives, BDS~m,d! may have no power+
Also, BDS~m,d! involves the choice of two parameters—m andd+ Both m and
d are fixed but arbitrary+ Becausem 2 1 is actually the largest lag order used,
BDS~m,d! has no power against alternatives for which serial dependence in
$et % occurs only at the lag orders equal to or larger thanm+ Ideally, a proper
choice ofm should depend on the alternative, which, however, is unknown when
serial dependence of$et % is of unknown form+ Similarly, some choice ofd may
render BDS~m,d ! inconsistent against certain alternatives+ There exists no
rule guided by chaos theory for choosing parametersm andd, although Brock
et al+ ~1991! have recommended a simple rule of thumb based on their simula-
tion study+ Moreover, as shown in Section 5, BDS~m,d! has suboptimal power
against some local alternatives+ For example, it can detect a local ARCH~1!-
type alternative with parametric raten2102 but a local MA~1! alternative with
raten2104 only+

In this paper, we propose a new diagnostic test for time series model~1+2!,
using a generalized spectrum proposed in Hong~1999!+ The test enjoys the
“nuisance-parameter-free” property of the BDS test under a wider class of time
series models, which include but are not restricted to ARCH and ACD models+
It is consistent against any type of pairwise serial dependence across various
lags in the model standardized residuals, a property not attainable by the BDS
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test+ It can detect a class of local alternatives with a rate slightly slower than
the parametric raten2102 but much faster thann2104+ This class includes both
MA and ARCH-type local alternatives+ Finally, generalized spectral smoothing
allows one to choose a lag order via data-driven methods, which are more ob-
jective than an arbitrary choice or a “rule of thumb” and thus give more robust
power+ A simulation study compares the proposed test and the tests of BDS,
Box–Pierce–Ljung, and McLeod–Li0Li–Mak in finite samples+ The new test
has reasonable power against a wide variety of stochastic and chaotic alterna-
tives to the null models+ It is a useful addition to the existing diagnostic tool kit
for time series models~see Barnett, Gallant, Hinich, Jungeilges, Kaplan, and
Jensen, 1997!+ An empirical application to the daily S&P 500 index highlights
the merits of the proposed test+ We emphasize, however, that our procedure is
best viewed as a complement rather than a substitute to the BDS test, which is
motivated from an interesting chaotic theory+4

It should be pointed out that there are a variety of nonparametric tests for
serial dependence in the literature+ These include the tests of Chan and Tran
~1992!, Cameron and Trivedi~1993!, Delgado ~1996!, Hong ~1998!, Pinkse
~1998!, Skaug and Tjøstheim~1993a, 1993b, 1996!, and Robinson~1991!+ All
of these tests are based on observed raw data rather than on estimated standard-
ized residuals+Whether and how the limit distributions of these tests will change
when applied to estimated standardized residuals has not been investigated+ In
this paper, we do not consider how to adapt these tests to estimated standard-
ized residuals$ [et %+

2. A NEW DIAGNOSTIC TEST

Hong ~1999! proposes a generalized spectrum as an analytic tool for linear and
nonlinear time series+ Suppose the time series$et % is strictly stationary+ The
basic idea of Hong~1999! is to consider the spectrum of the transformed series
$eiuet %, whereu [ R 5 ~2`,`!+ Define

sj ~u, v! 5 cov~eiuet,eivet2j !, i 5 M21, j 5 0,61, + + + , (2.1)

the covariance betweeneiuet andeivet2j+ Straightforward algebra yields

sj ~u, v! 5 wj ~u, v! 2 w~u!w~v!, (2.2)

where wj ~u, v! 5 E @ei ~uet1vet2j ! # and w~u! 5 E~eiuet ! are the joint and
marginal characteristic functions of~et ,et2j !+5 Thus, sj ~u, v! 5 0 for all
~u, v! [ R2 if and only if et and et2j are independent+ Suppose
sup~u, v![R2 (j52`

` 6sj ~u, v!6 , `, which holds when, for example, $et % is a
stationarya-mixing process with the mixing coefficients$a~ j !% satisfying

(j50
` a~ j !~n21!0n , ` for somen . 1+ Then the Fourier transform ofsj ~u, v!

exists:
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f ~v,u, v! 5
1

2p (
j52`

`

sj ~u, v!e2ijv, v [ @2p,p# + (2.3)

No moment condition on$et % is required+ When var~et ! exists, however, the
negative partial derivative off ~v,u, v! with respect to~u, v! at ~0,0! yields the
conventional spectral density:

2
]2f ~v,u, v!

]u]v *
~0,0!

5
1

2p (
j52`

`

R~ j !e2ijv,

whereR~ j ! 5 cov~et ,et2j !+ For this reasonf ~v,u, v! is called in Hong~1999!
a “generalized spectral density” of$et %+ The introduction of parameters~u, v!
offers much flexibility in capturing serial dependence in$et % + The generalized
spectrumf ~v,u, v! can capture any type of pairwise dependence across various
lags in$et % , including those with zero autocorrelations+ Searching over the do-
main of ~u, v!, for example, one can find the “maximal dependence” of$et % at
each frequencyv, as given by

s~v! 5 sup
~u, v![R2

6 f ~v,u, v!6, v [ @2p,p# ,

where 6{6 is the Euclidean norm+ This maximal spectral dependence may be
contributed from linear or nonlinear serial dependence in$et %+ A generalized
spectral peak at some frequency will indicate a cycle, seasonality, or periodic-
ity due to nonlinear dependence~e+g+, volatility clustering! when$et % is a white
noise+6

The generalized spectrumf ~v,u, v! differs from the well-known higher
order spectra, which are the Fourier transforms of higher order cumulants~cf+
Brillinger and Rosenblatt, 1967a, 1967b; Subba Rao and Gabr, 1980, 1984;
Terdik, 1999!+ It does not require any moment condition onet + This is appeal-
ing because, for example, it has been argued that many high-frequency eco-
nomic and financial time series have infinite variances~e+g+, Fama and Roll,
1968; Pagan and Schwert, 1990!+ It can effectively capture any pairwise
serially dependent processes, including ARCH with zero third cumulants+ For
such ARCH processes, the bispectrum—the Fourier transform of third-order
cumulants—will miss them+ We note, however, that f ~v,u, v! cannot capture
dependent processes that are pairwise serially independent~i+e+, et andet2j are
independent for any nonzeroj but $et % is serially dependent!, which may or
may not be captured by the bispectrum+ It would be interesting to compare the
generalized spectrum and the bispectrum thoroughly, but this is beyond the scope
of this paper and should be pursued elsewhere+

When$et % is i+i+d+, f ~v,u, v! becomes a flat generalized spectrum

f0~v,u, v! 5
1

2p
s0~u, v!, v [ @2p,p# + (2.4)
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Any deviation off ~v,u, v! from f0~v,u, v! is evidence of serial dependence of
$et %+ To test the i+i+d+ hypothesis for$et %, Hong ~1999! suggests that one com-
pare two consistent estimators off ~v,u, v! andf0~v,u, v! via anL2-norm+ Define

[sj ~u, v! 5 [wj ~u, v! 2 [wj ~u,0! [wj ~0, v!, j 5 0,61, + + + ,6~n 2 1!, (2.5)

where

[wj ~u, v! 5 5 ~n 2 j !21 (
t511j

n

ei ~u [et1v [et2j ! if j $ 0,

~n 1 j !21 (
t512j

n

ei ~u [et1j1v [et ! if j , 0+

(2.6)

Note that [wj ~u, v! 5 [w2j ~v,u!+ A kernel estimator forf ~v,u, v! can be defined as

Zfn~v,u, v! 5
1

2p (
j512n

n21

~12 6 j 60n!102k~ j0p! [sj ~u, v!e2ijv, (2.7)

wherek :R r @21,1# is a symmetric kernel andp [ pn is a bandwidth~or lag
order! such thatp r `, p0n r 0 asn r `+ Examples ofk~{! include the
Bartlett, Daniell, quadratic-spectral, and truncated kernels~e+g+, Priestley, 1981,
p+ 441!+ The factor~1 2 6 j 60n!102 is a finite-sample correction factor that de-
livers a better approximation to the finite-sample distribution+ We also have a
consistent estimator forf0~v,u, v!:

Zf0~v,u, v! 5
1

2p
[s0~u, v!, v [ @2p,p# + (2.8)

Let W:R r R1 be a nondecreasing function such thatW '~u! 5 w~v! exists
and is symmetric about 0, with * dW~u! 5 *w~u! du , `+ Examples ofW~{!
are the cumulative distribution functions ofN~0,1!, double exponential, and
uniform distributions+7 Then a test for the i+i+d+ hypothesis of$et % can be based
on a properly standardizedL2-norm:

ZM~ p! 5

npEE
2p

p

6 Zfn~v,u, v! 2 Zf0~v,u, v!62 dv dW~u! dW~v! 2 ZC0 (
j51

n21

k2~ j0p!

F2 ZD0 (
j51

n22

k4~ j0p!G102

5

E (
j51

n21

k2~ j0p!~n 2 j !6 [sj ~u, v!62 dW~u! dW~v! 2 ZC0 (
j51

n21

k2~ j0p!

F2 ZD0 (
j51

n22

k4~ j0p!G102
,

(2.9)
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where the second equality follows from Parseval’s identity, [sj ~u, v! 5 [s2j ~v,u!,
symmetry of weighting functionsk~{! and w~{!+ Moreover, the centering and
scaling factors have the following values:

ZC0 5 FE [s0~u,2u! dW~u!G 2

, (2.10)

ZD0 5 FE6 [s0~u, v!62 dW~u! dW~v!G 2

+ (2.11)

Throughout, unspecified integrals are taken over the entire Euclidean space of
proper dimension+ The test statistic ZM~ p! involves one- and two-dimensional
numerical integrations with respect to~u, v!, which can be implemented using,
e+g+, Gauss–Legendre quadratures+ Note that ZM~ p! involves no numerical inte-
gration over frequencyv, which has been integrated out as a result of the use
of the L2-norm+ Divergence measures rather than theL2-norm could be used,
but they would generally involve numerical integrations overv and also over
~u, v!, and the distribution theory might be different also+ A GAUSS code for
computing ZM~ p! with p chosen via a data-driven method is available from the
authors+

3. ASYMPTOTIC DISTRIBUTION

We now derive the null limit distribution of ZM~ p! and establish its “nuisance-
parameter-free” property under a wide class of time series models+ Following
are regularity conditions+

Assumption A+1+ $Yt % is a strictly stationarya-mixing process with

(j50
` a~ j !~n21!0n , ` for somen . 1+

Assumption A+2+ n102~ Zu 2 u0! 5 OP~1!, whereu0 5 plim~ Zu!+

Assumption A+3+ Let I t be the pseudo information set from timet
to the infinite past and letQ0 be a small convex neighborhood ofu0+
The functions g~I t ,{! and h~I t ,{! are twice continuously differentiable
with respect to u [ Q0 a.s+, with E supu[Q0

7h21~It ,u!~]0]u!g~It ,u!74,
E supu[Q0

7h21~It ,u!~]0]u!h~It ,u!74, E supu[Q0
7h21~It ,u!~]20]u2!g~It ,u!72,

E supu[Q0
7h21~It ,u!~]20]u2!h~It ,u!72, and E supu[Q0

@et
4~u!# all bounded

by some constantC [ ~0,`!, whereet~u! 5 @Yt 2 g~It21,u!#0h~It21,u!+

Assumption A+4+ Let ZIt be the observed information set available at timet
that may involve certain initial values+ Then
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lim
nr`

(
t51

n

E sup
u[Q0

*h~It ,u! 2 h~ ZIt ,u!

h~ ZIt ,u! * # C

and

lim
nr`

(
t51

n

E sup
u[Q0

* g~It ,u! 2 g~ ZIt ,u!

h~ ZIt ,u! * # C+

Assumption A+5+ k :R r @21,1# is symmetric about 0 and is continuous
at 0 and all points inR except a finite number of points, with k~0! 5 1,
*0
` k2~z! dz , `, 6k~z!6 # C6z62b asz r ` for someb . 1

2
_ andC [ ~0,`!+

Assumption A+6+ W :R r R1 is nondecreasing such that the derivative
W '~u! 5 w~u! exists and is symmetric about 0, with *2`

` dW~u! , ` and
*2`
` u4 dW~u! , `+

Assumption A+7+ D0 [ @*6s0~u, v!62 dW~u! dW~v!# 2 . 0+

These are conditions on the data generating process~DGP! $Yt % , model pa-
rameter estimatorZu, initial value conditions, modelsg~{,u! and h~{,u!, and
weight functionsk~{! andW~{!+ In Assumption A+1, we permit but do not re-
quire var~Yt ! , `+ An example with var~Yt ! 5` is the integrated GARCH~1,1!
process~Engle and Bollerslev, 1986!+ In Assumption A+2, we permit but do not
require Zu to be a quasi–maximum likelihood estimator~Lee and Hansen, 1994;
Lumsdaine, 1996!+ Any n102-consistent estimatorZu suffices+ Assumption A+3 is
a standard condition on the conditional mean and conditional variance models+
We require that the fourth moment of the standardized erroret exist+

Assumption A+4 is a start-up value condition+ It ensures that the impact of
initial values~if any! assumed inZIt is asymptotically negligible+ This condition
easily holds for many time series models+ To illustrate this, we first consider an
invertible MA~1! modelYt 5 aut21 1 ut , whereut 5 set , $et % is i+i+d+~0,1!, and
6a6 , 1+ Here, we haveg~It21,u! 5 aut21 andh~It21,u! 5 s, whereu 5 ~a,s!'+
Furthermore, we haveIt21 5 $Yt21, + + + ,Y1,Y0, + + + % and ZIt21 5 $Yt21, + + + ,Y1, [u0%,
where [u0 is some assumed value~e+g+, [u0 5 0! for u0+ The condition onh~{,{!
holds trivially, so we focus on the condition ong~{,{!+ By recursive substitu-
tion, we obtain

g~It21,u! 2 g~ ZIt21,u!

5 F(
j51

t21

~21! j21a jYt2j 1 a tu0 2 (
j51

t21

~21! j21a jYt2j 2 a t [u0G +
It follows that

(
t51

n

E sup
u[Q0

* g~It21,u! 2 g~ ZIt21,u!

h~ ZIt21,u! * # (
t51

`

E sup
u[Q0

F 6a6t~6u061 6 [u06!

s
G # C

provided6a6 , 1, 0 , s , `, E6et 6 , `, andE6 [u06 , `+
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Next, we consider a GARCH~1,1! model: Yt 5 et ht , where ht
2 5 v 1

aht21 1 bYt21
2 + Here, we have It21 5 $Yt21, + + + ,Y1,Y0, + + + % and ZIt21 5

$Yt21, + + + ,Y1, Zh0
2%, where Zh0

2 is an assumed value~e+g+, Zh0
2 5 1! for initial vari-

anceh0
2+ In this case, g~It21,u! 5 0 so the condition ong~{,{! holds trivially+

By recursive substitution, we have

h2~It21,u! 2 h2~ ZIt21,u! 5 v 1 b (
j50

t22

a jYt212j
2 1 ba t21h2~I0,u!

2 v 2 b (
j50

t22

a jYt212j
2 2 ba t21 Zh0

2+

It follows that

(
t51

n

E sup
u[Q0

*h~It21,u! 2 h~ ZIt21,u!

h~ ZIt21,u! * # (
t51

`

E sup
u[Q0

*ba t21 @h2~I0,u! 1 Zh0
2#

v * # C

providedv . 0, 0 , a, b , 1, a 1 b , 1, andE~h0
2! , `+

In Assumption A+5, the constantb governs the rate at which the kernel
k~z! r 0 aszr `+ For kernels with bounded support~e+g+, the Bartlett, Parzen,
Tukey, and truncated kernels!, b 5 `+ For the Daniell kernel and quadratic-
spectral kernel, b51 and 2, respectively+Assumption A+7 ensures that the choice
of W~{! does not lead to a degenerate test statistic+

THEOREM 1+ Suppose Assumptions A.1–A.7 hold and p5 cnl for
l [ ~0,1! and c[ ~0,`!+ Then if$et % is i.i.d., ZM~ p! d

&& N~0,1! as nr `.

Throughout, all the proofs are collected in the Appendix+ In the proof of
Theorem 1, we find that the use of anyn102-consistent estimatorZu rather than
u0 has no impact on the limit distribution ofZM~ p!+ Thus, ZM~ p! enjoys the
same “nuisance-parameter-free” property as the BDS test but under a wider
class of time series models—the “nuisance-parameter-free” property holds
under ARCH models for ZM~ p! but not for BDS~m,d!+

4. CONSISTENCY

Next, we establish the consistency ofZM~ p! under the alternative to the i+i+d+
hypothesis+

THEOREM 2+ Suppose Assumptions A.1–A.7 hold and p5 cnl for l [ ~0,1!
and c[ ~0,`!+ Then as nr `,

~ p1020n! ZM~ p!
p
&& F2D0E

0

`

k4~z! dzG2102

3 pEE
2p

p

6 f ~v,u, v! 2 f0~v,u, v!62 dv dW~u! dW~v!

5 F2D0E
0

`

k4~z! dzG2102

(
j51

` E6sj ~u, v!62 dW~u! dW~v!+ (4.1)
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Supposeet and et2j are not independent at some lagj . 0+ Then
*6sj ~u, v!62 dW~u! dW~v! . 0 for any weighting functionW~{! that is positive,
monotonically increasing, and continuous with unbounded support onR+ There-
fore, ZM~ p! is consistent against any type of pairwise dependence for anyW~{!
satisfying the aforementioned conditions+ The examples ofW~{! include the cu-
mulative distribution functions ofN~0,1!, double exponential, and Student’stn
distribution with n $ 5+ Thus, we expect that ZM~ p! has relatively omnibus
power against a wide variety of alternatives+ Because theL2-norm in ~4+1! is
positive whenever there exists pairwise serial dependence at any nonzero lag,
ZM~ p! is an asymptotically one-sidedN~0,1! test+ Upper-tailed asymptotic crit-

ical values~e+g+, 1+645 at the 5% level! should be used+
The choice ofW~{! for ZM~ p! may not be as important as the choice of dis-

tance parameterd for BDS~m,d!, because the latter can render BDS~m,d! in-
consistent against some alternatives+ In contrast, any W~{! that is positive,
monotonically increasing, and continuous with unbounded support onR al-
ways ensures consistency ofZM~ p! against any type of pairwise dependence
across various lags in$et % + Nevertheless, the choice ofW~{! might have impact
on the power of ZM~ p! in finite samples+ We investigate this in our simulation
that follows+ Our results show that a variety of choices ofW~{! have little im-
pact on the level and power ofZM~ p!, whereas the choice ofd has significant
impact on the level and power of BDS~m,d!+

5. ASYMPTOTIC LOCAL POWER

Local power analysis is insightful for the power property of a test+ As noted by
Tjøstheim~1996!, it is rather difficult to do asymptotic local power analysis
in the context of nonparametric testing for serial dependence+ For simplicity,
we consider a class of local alternatives for which there exists only first-order
serial dependence in$et % and the joint probability density of~et ,et21! is

Hn~an! : f1n~x, y! 5 f0~x! f0~ y!@11 ang~x, y! 1 rn~x, y!# , (5.1)

where f0~{! is a marginal probability density, rn~{,{! is a remainder that may
rise from the asymptotic expansion off1n~{,{!, andan r 0 asn r ` is the rate
at whichHn~an! converges to the i+i+d+ hypothesis+ To ensure thatf1n~{,{! is a
valid joint density, we make the following assumption+

Assumption A+8+ ~i! 11 ang~x, y! 1 rn~x, y! $ 0 for all ~x, y! [ R2 and all
n $ 1; ~ii ! *g~x, y! f0~x! f0~ y! dx dy 5 0 and * rn~x, y! f0~x! f0~ y! dx dy 5 0
for all n $ 1; and ~iii ! *g4~x, y! f0~x! f0~ y! dx dy , ` and *rn

4~x, y! 3
f0~x! f0~ y! dx dy5 o~an

4!+

Note thatf0~{! is the marginal density of$et % when $et % is i+i+d+ and g~{,{!
characterizes the type of serial dependence in$et %+ The condition onrn~{,{!
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ensures that the remainderrn~{,{! has no impact on the limit distribution of
ZM~ p! underHn~an!+ Two examples ofHn~an! are an MA~1! process:

et 5 an«t21 1 «t (5.2)

and an MA conditional heteroskedastic~MACH ~1!; Yang and Bewley, 1995!
process:

et 5 «tM11 an«t21
2 , (5.3)

where«t is i+i+d+ N~0,1!+ Here, g~x, y! 5 xy for ~5+2! andg~x, y! 5 ~x2 2 1! 3
~ y2 2 1! for ~5+3!+

THEOREM 3+ Suppose Assumptions A.1–A.8 hold and p5 cnl for l [ ~0,12_!
and c [ ~0,`! . Then ZM ~ p! d

&& N~ m,1! under Hn~ p1040n102! as n r `,
where the noncentrality

m 5 F2D0E
0

`

k4~z! dzG2102E6ei ~ux1vy!g~x, y! f0~x! f0~ y! dx dy62 dW~u! dW~v!+

Wheneverg~x, y! Þ 0, we havem . 0 providedW~u! is positive, monoton-
ically increasing, and continuous with unbounded support onR+ Consequently,
ZM~ p! has nontrivial power againstHn~ p1040n102!+ The ratep1040n102 is slower

than n2102, becausep r ` as n r `+ This is the price one has to pay to
achieve consistency against any type of pairwise serial dependence in$et % + How-
ever, it is faster thann2104 given p0n r 0+ If p @ log~n!, then p1040n102 @
n2102 log104~n!, which is nearly the same asn2102+ If p @ n105, as is the case
with the data-driven method described subsequently for some commonly used
kernels, p1040n102 @ n210211020, which is only slightly slower thann2102+ We
note that the use of$ [et %t51

n rather than$et %t51
n has no impact on the asymptotic

local power of ZM~ p! ~see Theorem A+3 in the Appendix!, so the conclusion of
Theorem 3 also applies to the tests considered in Hong~1999!, where no local
power analysis was given+

It is of interest to compare the asymptotic local power ofZM~ p! and BDS~m,d!+
For simplicity, we consider BDS~2,d ! under a subclass ofHn~an! where
g~x, y! 5 g1~x!g2~y! for some functionsgl :R r R such that*gl ~x! f0~x! dx5 0,
l 5 1,2+ We find that BDS~2,d! has nontrivial power underHn~an! if the limit
noncentrality

lim
nr`
Mn@C2~d! 2 C1~d!2# Þ 0+ (5.4)

Straightforward algebra shows that underHn~an! with g~x, y! 5 g1~x!g2~ y!,
we have
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C2~d! 2 C1~d!2 5EEEE1~6x 2 x ' 6 , d!1~6y 2 y' 6 , d!

3 f1n~x, y! f1n~x ', y' ! dx dx' dy dy'

2 FEE1~6x 2 y6 , d! f0n~x! f0n~ y! dx dyG 2

5 2anEE1~6x 2 y6 , d!g1~x! f0~x! f0~ y! dx dy

3 EE1~6x 2 y6 , d!g2~ y! f0~x! f0~ y! dx dy

1 an
2FEE1~6x 2 y6 , d!g1~x!g2~ y! f0~x! f0~ y! dx dyG 2

1 o~an
2!, (5.5)

wheref0n~{! denotes the marginal density ofet underHn~an!, which may not be
the same asf0~{!, the marginal density ofet when $et % is i+i+d+ If the first term
in ~5+5! is identically 0 for all n, the asymptotic local power of BDS~2,d!
will depend on the second term, which renders BDS~2,d! only able to detect
Hn~n2104!+ This occurs, e+g+, when the marginal densityf0~{! is uniform+8 Alter-
natively, suppose thatf0~x! 5 ~2p!2102 exp~2 1

2
_x2!, andgl ~{! is an odd function

for l 5 1 or 2; i+e+,

gl ~2x! 5 2gl ~x! for all x [ R, and forl 5 1 or 2+ (5.6)

Then the first term in~5+5! is identically 0 for alln, because the integral

EE1~6x 2 y6 , d! f0~ y! dygl ~x! f0~x! dx

5EE
x2d

x1d

f0~ y! dygl ~x! f0~x! dx

5EE
x2d

x1d

~2p!2102e2~ y202! dygl ~x!~2p!2102e2~x202! dx

5 p21EE
2d02

d02

gl ~ y 2 z!e2~ y21z2! dy dz

5 0 for l 5 1 or 2, (5.7)

where the third equality follows from changes of variable and the last one fol-
lows from ~5+6!+ Note that the MA~1! process in~5+2!, whereg1~x! 5 x and
g2~ y! 5 y, satisfies condition~5+6! and the MACH~1! process in~5+3!, where
g1~x! 5 x2 2 1 andg2~ y! 5 y2 2 1, does not satisfy condition~5+6!+ Thus,
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BDS~2,d! can detect MACH~1! with raten2102 but MA~1! with raten2104 only+
This explains why it is often found in practice that BDS~m,d! has excellent
power against ARCH~e+g+, Brock et al+, 1991!+ Note that a local MACH~1! is
equivalent to a local ARCH~1!+

6. CHOICE OF DATA-DRIVEN BANDWIDTH

Both BDS~m,d! and ZM~ p! involve the choice of lag orderm 2 1 or p+ Brock
et al+ ~1991!, based on simulation experiments, recommend some simple rule
of thumb thatm be small for finite sample sizes+ Our generalized spectral
smoothing provides a data-driven method to choosep, which, to some extent,
lets data themselves speak for a properp for ZM~ p!+ Before discussing specific
data-driven methods, we first justify the use of a data-driven lag order[p+ We
impose a Lipschitz continuity condition onk~{!, which rules out the truncated
kernelk~z! 5 1~6z6 # 1! but it includes most commonly used kernels+

Assumption A+9+ For any x, y [ R, 6k~x! 2 k~ y!6 # C6x 2 y6 for some
constantC [ ~0,`!+

THEOREM 4+ Suppose Assumptions A.1–A.7 and A.9 hold and[p is a
data-driven bandwidth such that[p0p 5 1 1 OP~ p2~~302!b21! ! for someb .
~2b 2 1

2
_!0~2b 2 1!, where b is as in Assumption A.5, p5 cnl with l [ ~0,1!,

and c[ ~0,`!+ Then if$et % is i.i.d., ZM~ [p! 2 ZM~ p!
p
&& 0 and ZM~ [p! d

&& N~0,1!
as nr `.

Thus, as long as [p converges top sufficiently fast, the use of [p rather than
p has no impact on the limit distribution ofZM~ [p!, an additional “nuisance-
parameter-free” property+ This extends the results of Hong~1999! to the esti-
mated standardized residuals of model~1+2!+

Theorem 4 allows for a wide range of admissible rates for[p+ One plausible
choice of [p is the plug-in method considered in Hong~1999!, which minimizes
an asymptotic integrated mean square error~IMSE! criterion for the estimator
Zfn~{,{,{! in ~2+7!+ This method is described as follows+ Consider the “pilot” es-

timators based on a preliminary bandwidthTp:

Nfn~v,u, v! 5
1

2p (
j512n

n21

~12 6 j 60n!102 Ok~ j0 Tp! [sj ~u, v!e2ijv, (6.1)

Nfn~q!~v,u, v! 5
1

2p (
j512n

n21

~12 6 j 60n!102 Ok~ j0 Tp! [sj ~u, v!6 j 6qe2ijv, (6.2)

where Ok :R r @21,1# is a kernel not necessarily the same as the kernelk~{!
used in~2+7!+ For example, Ok~{! can be the Bartlett kernel whereask~{! is the
Daniell kernel+ Note that Nfn~{,{,{! is an estimator forf ~{,{,{! and Nfn~q!~{,{,{! is
an estimator for the generalized spectral derivative
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f ~q! ~v,u, v! 5
1

2p (
j52`

`

sj ~u, v!6 j 6qe2ijv+ (6.3)

The plug-in bandwidth is then defined as

[p0 5 [c0n10~2q11!, (6.4)

where [c0 is the tuning parameter estimator given by

[c0 5 3 2q~k~q! !2

E
2`

`

k2~z! dz

EE
2p

p

6 Nf ~q! ~v,u, v!62 dv dW~u! dW~v!

E
2p

p FE Nfn~v,u,2u! dW~u!G2

dv 4
10~2q11!

5 3 2q~k~q! !2

E
2`

`

k2~z! dz

(
j512n

n21

~n 2 6 j 6! Ok2~ j0 Tp!6 j 62qE6 [sj ~u, v!62 dW~u! dW~v!

(
j512n

n21

~n 2 6 j 6! Ok2~ j0 Tp!FE [sj ~u,2u! dW~u!G2 4
10~2q11!

+

(6.5)

Note that the second equality in~6+5! follows from Parseval’s identity+
The data-driven [p0 still involves the choice of a preliminary bandwidthTp,

which either can be fixed or can grow with the sample sizen+ If Tp is fixed,
[p0 still grows at raten10~2q11! in general, but [c0 does not converge to the opti-

mal tuning constant+ This is analogous in spirit to a parametric plug-in method+
Hong ~1999! shows that whenTp grows withn properly, the data-driven band-
width [p0 in ~6+4! minimizes an asymptotic IMSE ofZfn~{,{,{!+9 Note that [p0 is
real-valued+ One can take its integer part, and the impact of integer-clipping is
expected to be negligible+ The choice of Tp is somewhat arbitrary, but we expect
that the choice of Tp is of secondary importance and may have no significant
impact on ZM~ [p0!+ This is confirmed in our subsequent simulation+

7. MONTE CARLO EVIDENCE

We now compare the level and power ofZM~ [p0!, BDS~m,d!, the Box–Pierce–
Ljung test BPL~ p!, the McLeod–Li test ML~ p!, and the Li–Mak test LM~ p, r !,
in finite samples+We check adequacy of two basic time series models—AR~r !
and ARCH~r !—for r 5 1,4, respectively+With the null AR~1! model, we exam-
ine the level of the tests, their power against a variety of neglected dynamics
and nonlinearities in conditional mean, and their power to distinguish AR~1!
from a chaotic alternative that has the same autocorrelation structure as AR~1!+
With the null ARCH~1! model, we examine the level of the tests, their power
against misspecification in conditional variance, their power to distinguish
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ARCH~1! from nonlinearities in mean that result in apparent ARCH structures,
and their power to distinguish ARCH~1! from a chaotic process that behaves
like a white noise but has similar autocorrelations in squares to ARCH~1!+ Fi-
nally, the null models AR~4! and ARCH~4! allow us to examine the impact of
parameter estimation uncertainty on the level of the proposed tests when the
parameter dimension increases+ Such impact is asymptotically negligible but
might be significant in finite samples+

7.1. Testing Conditional Mean Model

We first examine the adequacy of an AR~1! model:

Model A: Yt 5 a 1 bYt21 1 et , t 5 1, + + + , n,

under each of the following DGP:

DGP A+0 ~AR~1!!

Yt 5 0+6Yt21 1 «t +

DGP A+1 ~AR~2!!

Yt 5 0+6Yt21 2 0+5Yt22 1 «t +

DGP A+2 ~ARMA ~1,1!!

Yt 5 0+6Yt21 1 0+5«t21 1 «t +

DGP A+3 ~Bilinear!

Yt 5 0+6Yt21 1 0+7Yt22«t21 1 «t +

DGP A+4 ~Nonlinear MA!

Yt 5 0+6Yt21 1 0+7«t21«t22 1 «t +

DGP A+5 ~Threshold AR, TAR!

Yt 5 H 0+6Yt21 1 «t , if Yt21 , 1,

20+5Yt21 1 «t , if Yt21 $ 1+

DGP A+6 ~Markov Regime-Switching!

Yt 5 H 0+6Yt21 1 «t , if St 5 0,

20+5Yt21 1 «t , if St 5 1,

whereSt is a latent state variable that follows a two-state Markov chain with
transition probabilitiesP~St 5 16St21 5 0! 5 P~St 5 06St21 5 1! 5 0+3+
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DGP A+7 ~Sign Autoregressive, SIGN!

Yt 5 sign~Yt21! 1 s«t , s 5 0+43,

where sign~x! 5 1~x . 0! 2 1~x , 0!+

DGP A+8 ~Tent Map!

Yt 5 Ha21Yt21, if 0 # Yt21 , a,

~12 a!21~12 Yt21!, if a # Yt21 # 1,

wherea 5 0+49999 andY0 is generated from the uniform distribution on@0 1# +
In DGPs A+0–A+7, $«t % is i+i+d+~0,1!+ DGPs A+1 and A+2 are used to check the

power of tests against neglected dynamics in mean, and DGPs A+3–A+6 are
used to check against various neglected nonlinearities in mean+ DGPs A+3 and
A+4 are not invertible but they are second-order stationary, as shown in Granger
and Andersen~1978, pp+ 90–91!+ The SIGN model examined in Granger and
Teräsvirta~1999!, DGP A+7, is a first-order nonlinear autoregressive process
but has the same autocorrelation function as an AR~1! process: r~ j ! 5
~1 2 2q! 6 j 6, whereq 5 P~s«t , 21! 5 P~s«t . 1! when «t is symmetric+
Following Granger and Teräsvirta~1999!, we chooses 5 0+43 so thatq 5 0+01
if «t is N~0,1!+ The tent map, DGP A+8, is a deterministic chaotic process, but it
resembles in autocorrelation an AR~1! process with the AR coefficient 2a 2 1
~see Sakai and Tokumaru, 1980!+ The DGPs A+7 and A+8 allow us to examine
how a test can distinguish an AR~1! model from nonlinear stochastic and cha-
otic processes that behave like a linear process in terms of autocorrelation+

7.2. Testing Conditional Variance Model

Next, we examine the adequacy of an ARCH~1! model:

Model B: Yt 5 ht et , ht
2 5 a 1 bYt21

2 , $et % ; i+i+d+~0,1!, t 5 1, + + + , n,

whenYt is generated from the following generating processes:

DGP B+0 ~ARCH~1!!

Yt 5 ht «t , ht
2 5 0+9 1 0+1Yt21

2 +

DGP B+1 ~ARCH~2!!

Yt 5 ht «t , ht
2 5 0+11 0+1Yt21

2 1 0+8Yt22
2 +

DGP B+2 ~GARCH~1,1!!

Yt 5 ht «t , ht
2 5 0+11 0+1Yt21

2 1 0+8ht21
2 +
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DGP B+3 ~EGARCH~1,1!!

Yt 5 ht «t , ln ht
2 5 0+011 0+9 ln ht21

2 1 0+3~6«t2162 ~20p!102! 2 0+8«t21+

DGP B+4 ~Stochastic Volatility!

Yt 5 ht «t , ht
2 5 0+1Yt21

2 1 exp~w ln ht21
2 1 vt !,

$vt % ; i+i+d+ N~0,1!, w 5 0+98+

DGP B+5 ~Bilinear!

Yt 5 0+8Yt21«t21 1 «t +

DGP B+6 ~TAR!

Yt 5 H0+8Yt21 1 «t , Yt21 , 1,

20+5Yt21 1 «t , Yt21 $ 1+

DGP B+7 ~Nonlinear MA!

Yt 5 0+8«t21
2 1 «t +

DGP B+8 ~Logistic Map!

Yt 5 4Yt21~12 Yt21!,

whereY0 is generated from the uniform distribution on@0, 1# +
In DGPs B+0–B+7, $«t % is i+i+d+~0,1!+ The DGPs B+1–B+4 are used to examine

the power of the tests against misspecification in conditional variance+ In DGP
B+4, parameter valuew 5 0+98 is empirically relevant; Harvey, Ruiz, and Shep-
hard~1994! obtain estimates ofw in range of 0+9575–0+9948 for four different
daily foreign exchange rates+ The DGPs B+5–B+7 allow us to examine the power
to distinguish ARCH from a variety of nonlinearities in mean that result in ap-
parent ARCH structures+ Such distinction has important implications in prac-
tice ~Weiss, 1986; Bera and Higgins, 1997; Diebold, 1986!+ DGP B+8, the logistic
map, behaves like a white noise but has similar autocorrelations in squares to
ARCH~1! ~e+g+, Granger and Teräsvirta, 1993, p+ 34!+ It is used to examine the
power of a test to distinguish ARCH from a chaotic process with similar auto-
correlations in squares+ From the results of He and Teräsvirta~1999!, we note
that $Yt % does not have finite fourth moments under DGP B+1 even when$«t %
is i+i+d+N~0,1!+ However, $Yt % has all finite moments under DGP B+3 when$«t %
is i+i+d+N~0,1!, but var~Yt ! is infinite when$«t % is i+i+d+t5 ~see Nelson, 1991!+
We conjecture that var~Yt ! is also infinite when$«t % is an i+i+d+ sequence of
mixed normals+ Note that strict stationarity holds under both DGPs B+1 and
B+3+ On the other hand, DGPs B+5 and B+7 are not invertible, but they are second-
order stationary~see Granger and Andersen, 1978, pp+ 90–91!+
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7.3. Testing Higher Order Models

We now examine the impact of parameter estimation uncertainty on the level
of the proposed tests+ We examine how the level of the tests is affected by
increasing the number of estimated parameters+ Such impact is asymptotically
negligible but might be significant in finite samples+We consider the following
two higher order models under the null hypothesis+

First, we consider the adequacy of an AR~4! model for the conditional mean:

Model C: Yt 5 a 1 (
j51

4

bj Yt2j 1 et , t 5 1, + + + , n,

under the following DGP:

DGP C+0 ~AR~4!!

Yt 5 0+9@0+4Yt21 1 0+3Yt22 1 0+2Yt23 1 0+1Yt24# 1 «t , $«t % ; i+i+d+~0,1!+

Next, we consider the adequacy of an ARCH~4! model for the conditional
variance:

Model D: Yt 5 ht et , ht
2 5 a 1 (

i51

4

bi Yt2i
2 ,

$et % ; i+i+d+~0,1!, t 5 1, + + + , n,

whenYt is generated from the following DGP:

DGP D+0 ~ARCH~4!!

Yt 5 ht «t , ht
2 5 0+11 0+9@0+4Yt21

2 1 0+3Yt22
2 1 0+2Yt23

2 1 0+1Yt24
2 # ,

$«t % ; i+i+d+~0,1!+

For all the DGPs except the chaotic processes A+8 and B+8, we use the GAUSS
Windows version random number generator to generate i+i +d+ innovations
$«t % from four distributions: ~i! N~0,1!; ~ii ! exponential; ~iii ! mixed normal,
P@«t ; N~23,1!# 5 P@«t ; N~3,1!# 5 0+5; and~iv! Student’st5+ All the «t have
been rescaled to have mean 0 and variance 1+ We generaten 1 1,000 observa-
tions for $«t % under each of the distributions~i!–~iv! and then discard the first
1,000 to alleviate the impact of using some initial values+ We report the levels
of the tests under all four error distributions, but for space we report the power
under the normal error only+

7.4. Monte Carlo Evidence

To compute the test statisticZM~ [p0!, BDS~m,d!, BPL~ p!, ML ~ p!, and LM~ p, r !,
we use the usual residual series[et 5 Yt 2 [a 2 ZbYt21 from Model A and
[et 5 Yt 2 [a 2 (j51

4 Zbj Yt2j from Model C, estimated by the ordinary least
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squares method, and the standardized residual series[et 5 Yt 0 Zht where Zht
2 5

[a 1 ZbYt21
2 from Model B and Zht

2 5 [a 1 (j51
4 Zbj Yt2j

2 from Model D, estimated by
the quasi–maximum likelihood method with a Gaussian likelihood function+

For the generalized spectral testZM ~ [p0!, we use Daniell kernelk~z! 5
sin~pz!0pz, which enjoys the optimal power property over a class of kernels
~Hong, 1999, Theorem 5!+10 To examine the impact of the choice of prelimi-
nary bandwidths Tp on the level and power of ZM~ [p0!, we consider Tp 5 1–10+
To investigate the impact of the choice of weight functionW~{! on the level
and power of ZM~ [p0!, we consider the three distribution functions: ~i! N~0,1!,
~ii ! double exponential, and ~iii ! t5-distribution+ They are all scaled to have
mean 0 and variance 1+

For BDS~m,d!, Brock et al+ ~1991! recommend usingd in range 0+5s–1+5s
andm in range 2–5, for n 5 500–1,000, wheres2 5 var~Yt !+ To examine the
impact of the choice of embedding dimensionm on the level and power of
BDS~m,d!, we usem 5 2–11, which is equivalent to the choice of a lag order
p from 1 to 10+ As some DGP may have no finite variance, we consider three
choices of distance parameter: d 5 0+5, 0+25, 0+125, in the unit of data range+
For normal random samples, these choices roughly correspond to 2s, s, and
0+5s, respectively+

For the Box–Pierce–Ljung test, BPL~ p!, we usep 5 2–10 for Model A
~ p 5 1 cannot be chosen because of the adjustment of the degree of freedoms
for its asymptotic distribution! andp 5 1–10 for Model B+

For the McLeod–Li test ML~ p!, which is suitable to test AR~r ! models,
we usep 5 1–10 for Model A+ For the Li–Mak test LM~ p, r !, which is suitable
to test ARCH~r ! models, p 5 2–10 for Model B ~similarly to BPL~ p! for
Model A, p 5 1 cannot be chosen here for LM~ p, r ! whenr 5 1!+

To examine the levels of the tests under the null AR~1! model and under the
null ARCH~1! model, we estimate Model A and Model B under DGP A+0 and
DGP B+0, respectively+ We consider the empirical level at the 10%, 5%, and
1% significance levels forn 5 100 and 200, using asymptotic critical values
and 1,000 Monte Carlo iterations+ To conserve space, Figures 1 and 2 only
report the levels of the tests at the 5% level forn 5 100+ Similarly, to examine
the levels of the tests under the null AR~4! model and under the null ARCH~4!
model, we estimate Model C and Model D under DGP C+0 and DGP D+0, re-
spectively, and report the results in Figures 1 and 2 also+11

To examine the powers of the tests against various misspecifications of the
AR~1! model, we report in Figure 3 the powers of the tests under DGPs A+1–
A+8, each of which is fitted by an AR~1! model+ To examine the powers of the
tests against various misspecifications of the ARCH~1! model, we report in Fig-
ure 4 the powers of the tests under DGPs B+1–B+8, each of which is fitted by an
ARCH~1! model+ The power is level-adjusted by using the empirical critical
values obtained under DGPs A+0 and B+0, respectively, which provide a fair
comparison among the tests under study+ We only report the power at the 5%
level, for n 5 100 and normal errors$«t %, using 1,000 replications+
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In Figures 1–4, the levels or powers of ZM~ [p0!, BDS~m,d!, BPL~ p!, ML ~ p!,
and LM~ p, r ! are plotted as functions ofTp, m2 1, p, p, andp in the horizontal
axis, respectively+ In each graph, there are three plots forZM~ [p0! in solid lines,
denoted as Ml ~l 5 1,2,3!, that correspond to three weight functionsW~{!—
the distribution functions ofN~0,1!, double exponential, and t5+ There are also

Figure 1. Size of testing conditional mean at 5% level—~a! DGP A+0: AR~1!–N~0,1!,
~b! DGP A+0: AR~1!–exponential, ~c! DGP A+0: AR~1!–mixed normal, ~d! DGP A+0:
AR~1!–t5+
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three plots for BDS~m,d! in dashed lines, denoted as BDSl ~l 5 1,2,3!, that
correspond to three distance parameter values—d 5 0+5l + Moreover, ML ~ p! or
LM ~ p, r ! is plotted in dotted lines, and BPL~ p! is plotted with more closely
spaced dots+ The test ML~ p! is reported in Figures 1 and 3, where the usual

Figure 1. Size of testing conditional mean at 5% level—~e! DGP C+0: AR~4!–N~0,1!,
~f ! DGP C+0: AR~4!–exponential, ~g! DGP C+0: AR~4!–mixed normal, ~h! DGP C+0:
AR~4!–t5+
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estimated residuals are used, and LM~ p, r ! is reported in Figures 2 and 4, where
the standardized estimated residuals are used+

We first examine the levels in Figures 1 and 2+ We observe the following
patterns+

1+ Overall, the levels of the testsZM~ [p0!, BPL~ p!, and ML~ p! under the null AR~1!
model and the levels of the testsZM~ [p0!, BPL~ p!, and LM~ p, r ! under the null

Figure 2. Size of testing conditional variance at 5% level—~a! DGP B+0: ARCH~1!–
N~0,1!, ~b! DGP B+0: ARCH~1!–exponential, ~c! DGP B+0: ARCH~1!–mixed normal,
~d! DGP B+0: ARCH~1!–t5+
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ARCH~1! model are more or less reasonable, whereas the level of BDS~m,d! ap-
pears not very satisfactory+ The unsatisfactory level performance of BDS~m,d!
under the null ARCH~1! model may be due to its violation of the “nuisance-
parameter-free” property under the ARCH~1! model+

2+ The level of ZM~ [p0! is robust to the choice of weight functionW~{! and prelimi-
nary bandwidth Tp+ The levels of BPL~ p! and ML~ p!0LM ~ p, r ! are excellent and

Figure 2. Size of testing conditional variance at 5% level—~e! DGP D+0: ARCH~4!–
N~0,1!, ~f ! DGP D+0: ARCH~4!–exponential, ~g! DGP D+0: ARCH~4!–mixed normal,
~h! DGP D+0: ARCH~4!–t5+
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robust to the choice of lag orderp+ On the other hand, the level of BDS~m,d! is
sensitive to the choices of distance parameterd and embedding dimensionm+ The
fact that BDS~m,d! is sensitive tom whereas ZM~ [p0! is not sensitive toTp indicates
the practical merit of the data-driven choice of lag order[p0 for ZM~ [p0!+

3+ ZM~ [p0! displays some~not excessive! underrejection under the null AR~1! with
normal errors or some~not excessive! overrejection under the ARCH~1! model

Figure 3. Size-corrected power of testing conditional mean at 5% level—~a! DGP A+1:
AR~2!–N~0,1!, ~b! DGP A+2: ARMA ~1,1!–N~0,1!, ~c! DGP A+3: bilinear–N~0,1!,
~d! DGP A+4: nonlinear MA–N~0,1!+
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with exponential and mixed normal errors+ On the other hand, the level distortion
of BDS~m,d! is quite large, especially under the mixed normal errors, which is
consistent with the findings of Brock et al+ ~1991, p+ 50!+

4+ The level patterns of each test under the null AR~1! model and the null ARCH~1!
model are more or less similar+

Figure 3. Size-corrected power of testing conditional mean at 5% level—~e! DGP A+5:
TAR–N~0,1!, ~f ! DGP A+6: Markov switching–N~0,1!, ~g! DGP A+7: SIGN–N~0,1!, ~h!
DGP A+8: tent map+
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5+ The preceding four observed level patterns for the null models of AR~1! and
ARCH~1! carry over to the higher order null models of AR~4! and ARCH~4!+ This
indicates that model parameter estimation uncertainty does not affect the level of
the tests at least for the models and sample sizes considered+

Figure 4. Size-corrected power of testing conditional variance at 5% level—
~a! DGP B+1: ARCH~2!–N~0,1!, ~b! DGP B+2: GARCH~1,1!–N~0,1!, ~c! DGP B+3:
EGARCH–N~0,1!, ~d! DGP B+4: stochastic volatility–N~0,1!+
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In Figures 1 and 2 we consider the levels of the tests under an AR coefficient
of 0+6 for DGP A+0 and the levels of the tests with an ARCH coefficient of 0+1
for DGP B+0+We have also experimented~not reported! with a variety of coef-
ficient values: 0+0, 0+1, 0+2, 0+3, 0+4, 0+5, 0+6, 0+7, 0+8, and 0+9 in both cases+

Figure 4. Size-corrected power of testing conditional variance at 5% level—~e! DGP
B+5: bilinear–N~0,1!, ~f ! DGP B+6: TAR–N~0,1!, ~g! DGP B+7: nonlinear MA–N~0,1!,
~h! DGP B+8: logistic map+
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We note that the fourth moment ofYt does not exist when the ARCH~1! coef-
ficient value is larger than or equal to 1YYM3 . 0+577 for DGP B+0+ In most
scenarios, the levels of ZM~ [p0!, BDS~m,d!, BPL~ p!, and ML~ p!0LM ~ p, r !
are generally robust to the values of the AR~1! and ARCH~1! coefficients in
DGP A+0 and DGP B+0+ One exception is BPL~ p!, which tends to overreject
under the null AR~1! model when the AR coefficient is close to 1~say, 0+9! in
DGP A+0 and lag orderp is small, but its level becomes reasonable for larger
lag ordersp, say, p . 5+

We now examine the powers of the tests+ To be fair in comparison and to
take into account the BDS~m,d! ’s violation of the “nuisance-parameter-free”
property under the ARCH~1! model, we use empirical critical values+ We first
examine the powers of the tests against various misspecifications of an AR~1!
model, as reported in Figure 3+ We observe the following patterns+

1+ The power of ZM~ [p0! is generally not sensitive to the choice of the preliminary
bandwidth~or lag order! Tp+ The power of BDS~m,d! seems sensitive to the choice
of the embedding dimensionm, which is equivalent to the choice of a lag order+
The tests BPL~ p! and ML~ p! are also sensitive to the choice of lag orderp in
some cases+

2+ The power of ZM~ [p0! is robust to the choices of weight functionW~{!, whereas the
power of BDS~m,d! is sensitive to the choice of distance parameterd+

3+ ~a! The autocorrelation test BPL~ p! has excellent power against AR~2!,
ARMA ~1,1!, and SIGN alternatives to the AR~1! model+ Nevertheless, as ex-
pected, BPL~ p! cannot detect the nonlinear alternatives—bilinear, nonlinear
MA , TAR, and Markov regime-switching+ It also cannot distinguish AR~1!
from the tent map, which resembles an AR~1! process in autocorrelation but is
completely deterministic+

~b! The correlation in squares test, ML ~ p!, has good power against bilinear, non-
linear MA, Markov regime-switching, and tent map alternatives to the AR~1!
model+ However, it has low power against AR~2!,ARMA ~1,1!, TAR, and SIGN
alternatives+

~c! BDS~m,d! has good power against bilinear, nonlinear MA, and tent map al-
ternatives to the AR~1! model+ However, it has low power against ARMA~1,1!,
TAR, and SIGN alternatives+

~d! The generalized spectral testZM ~ [p0! has excellent power against AR~2!,
ARMA ~1,1!, bilinear, TAR, SIGN, and tent map alternatives to the AR~1!
model+And it has moderate power for Markov regime-switching and low power
for nonlinear MA alternatives+

4+ Overall, ZM~ [p0! has reasonable omnibus power against all linear and nonlinear de-
pendent alternatives except for nonlinear MA+ Moreover, it is more powerful than
the other tests in many cases+

Next, we examine the powers of the tests against various misspecifications
of the ARCH~1! model, as reported in Figure 4+ We observe the following
patterns+
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1+ As in testing misspecifications in conditional mean, the power of ZM~ [p0! is robust
to the choice of the preliminary bandwidth~or lag order! Tp in most cases+ The
power of BDS~m,d! is sensitive to the choice of the embedding dimensionm+ The
tests BPL~ p! and LM~ p, r ! are also sensitive to the choice of lag orderp in some
cases+

2+ The power of ZM~ [p0! is robust to the choices of weight functionW~{!, whereas the
power of BDS~m,d! is sensitive to the choice of distance parameterd+

3+ ~a! The correlation-based test BPL~ p! has low power against ARCH~2!,
GARCH~1,1!, EGARCH~1,1!, stochastic volatility, bilinear, nonlinear MA, and
logistic map alternatives to the ARCH~1! models+ These alternatives are either
martingale difference sequences or serially uncorrelated processes+ However,
BPL~ p! has good power to distinguish TAR from ARCH~1!+

~b! The correlation-in-squares test~the Li–Mak test!, LM ~ p, r !, is most powerful
against ARCH~2!, for which it has good power by its design+ Nevertheless,
LM ~ p, r ! has low power against other forms of conditional heteroskedastic
alternatives to ARCH~1!, such as GARCH~1,1!, EGARCH~1,1!, and stochas-
tic volatility models+ Moreover, it cannot distinguish ARCH~1! from bilinear,
TAR, nonlinear MA, and logistic map processes+ Many of these nonlinear con-
ditional mean models have similar moment structures to ARCH~1!+ In partic-
ular, the logistic map behaves like a white noise but has similar autocorrelations
in squares to ARCH~1! ~cf+ Granger and Teräsvirta, 1993, p+ 34!+

~c! BDS~m,d! has poor power against bilinear, TAR, and nonlinear MA alterna-
tives to the null ARCH~1! model+ This finding is consistent with the findings
of Brooks and Heravi~1999!, who document that BDS~m,d! is a fairly poor
discriminator of bilinear and TAR processes from ARCH processes+ Such dis-
tinctions have important implications in terms of predictability in economics
and finance~e+g+, Bera and Higgins, 1997; Weiss, 1986!+

~d! ZM~ [p0! has high power against EGARCH~1,1! and stochastic volatility alter-
natives to the ARCH~1! model+ It has high power to distinguish ARCH~1!
from bilinear, TAR, nonlinear MA, and logistic map processes+ Interestingly,
ZM~ [p0! has better power than BDS~m,d! against the logistic map alternative+

4+ Overall, the generalized spectral testZM~ [p0! has omnibus power against all alter-
natives except for GARCH~1,1!+ For the GARCH~1,1! alternative to ARCH~1!,
all the tests have low or little power+ In most cases, ZM~ [p0! is the most powerful+

8. EMPIRICAL APPLICATION

To further highlight the merits of our generalized spectral test, we now apply it
to evaluate an empirical financial time series model+ As is well known, practi-
cal model-based financial decision making such as hedging, risk management,
and option pricing will be satisfactory only if it builds on reasonable specifi-
cation of the underlying asset price processes+ In an important contribution,
Andersen, Benzoni, and Lund~2002! use efficient method of moments~EMM !
of Gallant and Tauchen~1996! to evaluate the adequacy of a variety of
continuous-time parametric models for the daily S&P 500 equity index and the
impact of different specifications on option pricing+ The EMM method is based
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on the expectation of the score function of a discrete-time auxiliary semi-
nonparametric model that adequately approximates the conditional distribution
of the discretely sampled data in an asymptotic sense+ An attractive feature of
EMM is that it is generally applicable and achieves the same efficiency as the
maximum likelihood estimator when the score function of the auxiliary model
asymptotically spans the score function of the true conditional distribution+More-
over, the EMM criterion function can be used to construct an overall test of the
overidentifying restrictions on the parametric model to be tested, and the fit of
individual scores can be used to gauge how well the parametric model captures
particular features of data+

In their EMM applications to the S&P 500 index, Anderson et al+ ~2002!,
based on some model selection criteria, choose the following auxiliary model
for the daily S&P 500 price changes:

Yt 5 f0 1 f1ut21 1 ut , ut 5 ht et , $et % ; i+i+d+ ~0,1!, t 5 1, + + + , n,

ln ht
2 5 v 1 (

j51

p

bj ln ht2j
2 1S11 (

j51

q

aj L
jD @u1et21 1 u2~6et2162 E6et216!# ,

where the density of$et % is approximated by Hermite polynomials+ The i+i+d+
property for$et % is obtained as a consequence of using some model selection
criteria+ This model is referred to as MA~1!-EGARCH~ p,q!, as in the work of
Andersen et al+ ~2002!, who estimate the model in two steps: as the first-order
autocorrelation in$Yt % is largely “artificial,” induced by nonsynchronous trad-
ing effects, they filter out this effect before estimating the conditional vari-
ance+12 Here, we adopt the same conditional mean model—MA~1!—but we
estimate it jointly with the conditional variance model via the quasi–maximum
likelihood method+ We maximize the log likelihood for the generalized error
distribution, described in Nelson~1991!+ Table 1 reports our quasi–maximum
likelihood estimation of the MA-EGARCH models for both the whole sample
~1953–1996! and the subsample~1980–1996!+ For comparison, we also include
the estimation results in Anderson et al+ ~2002!+

Anderson et al+ ~2002! find that an MA~1!-EGARCH~1,1! model can ade-
quately capture the full serial dependence in the daily S&P 500 equity index
changes from 0100201953 to 1203101996 ~with n 5 11,076!, and an MA~1!-
EGARCH~2,1! model can adequately capture the full serial dependence in
daily changes of the S&P 500 index from 0100201980 to 1203101996 ~with
n 5 4,298!+ In both cases, the density of the i+i+d+ erroret is approximated by a
Hermite polynomial expansion+

The adequacy of the full dynamics of the auxiliary semi-nonparametric model
for $Yt % is crucial for the efficiency of the EMM estimator and the validity of
the related EMM diagnostic tests+ Although a semi-nonparametric model is as-
ymptotically free of model misspecification from a theoretical point of view,
the use of some model selection criteria might lead to a misspecified model in
practice+ It is therefore important to check if the aforementioned MA~1!-
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Table 1. Estimates of MA~1!-EGARCH models for S&P 500 index changes

0100201953–1203101996~n 5 11,076!
MA ~1!-EGARCH~1,1!

0100301980–1203101996~n 5 4,298!
MA ~1!-EGARCH~2,1!

This paper Andersen et al+ This paper Andersen et al

Parameter Estimate S+E+ Estimate S+E+ Estimate S+E+ Estimate S+E+

f0 0+0357 0+0063 0+0331 0+0142 0+0421 0+0109 20+0398 0+0398
f1 0+1447 0+0116 — — 0+0318 0+0151 — —
v 20+0084 0+0019 4+3769 1+1249 20+0090 0+0041 2+6724 0+4565
a1 20+4750 0+0666 20+4391 0+0635 0+5537 0+2479 0+5712 0+1559
b1 0+9887 0+0023 0+9893 0+0022 0+0508 0+0277 0+0388 0+0199
b2 N+A+ N+A+ N+A+ N+A+ 0+9268 0+0269 0+9213 0+0183
u1 20+0997 0+0137 20+1581 0+0195 20+0472 0+0194 20+0916 0+0234
u2 0+2259 0+0290 0+2973 0+0280 0+1268 0+0329 0+2011 0+0340
n 1+3750 0+0446 N+A+ N+A+ 1+2793 0+0569 N+A+ N+A+

MeanL 21+0616 21+1949

Note: The results of Andersen et al+ ~2002! are taken from their Table II for the whole sample~1953–1996! and from their Table VII for the subsample~1980–1996!+ Summary
statistics of the data are also provided in Andersen et al+ ~2002, Table I!+ They estimate the model in two steps with MA~1! estimated separately from the conditional variance model
~instead of jointly! and do not reportf1+ In this paper we estimate the mean and variance models jointly+ The log-likelihood for the generalized error distribution~GED!, normalized
to have zero mean and unit variance, and the expression ofE6et216 can be found in Nelson~1991!+ MeanL 5 n21 (t51

n log Lt is the mean log-likelihood, n is a parameter for the GED
distribution, and S+E+ is the estimated robust standard error+

1
0

9
7



EGARCH models indeed completely capture the full serial dependence in the
daily S&P 500 index data+ Anderson et al+ ~2002! note that the standardized
estimated residuals of these models pass Box–Pierce–Ljung type tests+We now
check the adequacy of these MA~1!-EGARCH models by using our new pro-
cedure+ For comparison, we also report the results for BPL~ p!, LM ~ p, r !, and
BDS~m,d! tests+ Our results confirm that these models do pass the BLP~ p!,
LM ~ p, r !, and BDS~m,d! tests, but our new test finds very strong evidence of
model misspecification missed by the BPL~ p!, LM ~ p, r !, and BDS~m,d! tests+

Figure 5 reports thep-values of the proposed testZM~ [p0!, BPL~ p!, LM ~ p, r !,
and BDS~m,d! tests+We report ZM~ [p0! only with the normal cumulative distri-
bution function~c+d+f+! as the weighting function, denoted asM1 in Figure 5,
because ZM~ [p0! is robust to the choice of the weight functions+ However, we
still report BDS~m,d! with three choices of distance parametersd 5 0+5, 0+25,
and 0+125 in unit of data range, denoted as BDS1, BDS2, and BDS3, respec-
tively+ As LM ~ p, r ! is computed for the standardized residuals withh~ ZIt21, Zu!
an estimated EGARCH model~not ARCH~r !!, its asymptotic distribution is
not xp2r

2 and is unknown to us+ Thus, we report the bootstrapp-values in addi-
tion to the asymptoticp-values+13 The bootstrapp-values are expected to pro-
vide more reliable inferences for all the tests+

We first consider the results for the whole sample from 1953 to 1996~see
Figures 5a and 5b!+ We report asymptotic and bootstrapp-values forM1,
BPL~ p!, and LM~ p, r !+ We do not report BDS~m,d! for the whole sample,
because we use the program, accompanied by the book by Brock et al+ ~1991!,
that can handle only up to 7,500 observations+ TheM1 test has zero asymptotic
and bootstrapp-values+ In fact, the M1 statistic values range from 13+3 to 14+5
when the preliminary lag orderTp changes from 21 to 50 and the Parzen kernel
is used, and they range from 10+5 to 14+3 when Tp changes from 21 to 50 and
the Bartlett kernel is used+ The BPL~ p! test has large asymptotic and boot-
strapp-values, ranged approximately from 10% to 25%, well above the con-
ventional 5% level+ The LM~ p, r ! test statistic is clearly insignificant in terms
of both asymptotic and bootstrapp-values+ Because the asymptotic distri-
bution of LM~ p, r ! is not xp2r

2 when the conditional variance model is not
ARCH~r !, we rely on the bootstrapp-values in this case+ The bootstrap
p-values reported in Figure 5 are based onr 5 0 for LM ~ p, r !, but other values
of r give similar bootstrapp-values~not reported!+ Using BPL~ p! and LM~ p, r !,
which have been commonly used in practice as diagnostic tools, we fail to de-
tect any model inadequacy+ In contrast, our proposed test indicates that the model
does not adequately capture the full serial dependence in the S&P 500 index
changes+

Next, we consider the results for the subsample~see Figures 5c and 5d!+ We
now report BDS~m,d! also because the BDS program we use can handle this
subsample~n 5 4,298!+ Again, theM1 test is the most powerful test: it has zero
p-values in terms of both asymptotic and bootstrapp-values+ The M1 statistic
values range from 5+9 to 6+6 when the preliminary lag orderTp changes from 21
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to 50 and the Parzen kernel is used, and it ranges from 5+2 to 6+5 when Tp changes
from 21 to 50 and the Bartlett kernel is used+ The BPL test has both asymptotic
and bootstrapp-values well above 10%, consistent with the results of Anderson
et al+ ~2002!+ The LM~ p, r ! test has bootstrapp-values above 20%+ The

Figure 5. Empirical application—~a! Asymptotic p-values: 1953–1996, ~b! bootstrap
p-values: 1953–1996, ~c! asymptoticp-values: 1980–1996, ~d! bootstrapp-values: 1980–
1996+
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BDS~m,d! tests are sensitive to the choice of distance parameterd+ Never-
theless, all three BDS tests fail to reject the MA~1!-EGARCH~2,1! model+ For
d 5 0+125, BDS3 has largep-values close to one in terms of both asymptotic
and bootstrapp-values+ When d 5 0+25, BDS2 is very sensitive tom and has
asymptotic and bootstrapp-values in the range 0+35–1+00+Whend 5 0+5, BDS1

has bootstrapp-values about 0+50+
In summary, the proposed testZM~ [p0! firmly rejects the adequacy of MA~1!-

EGARCH models for daily S&P 500 index changes, whereas BDS~m,d !,
BPL~ p!, and LM~ p, r ! tests fail to detect any model inadequacy+ This implies
that care should be taken in interpreting the statistical significance of the EMM
test statistics reported in Anderson et al+ ~2002!, because an inadequate auxil-
iary model affects the efficiency of the EMM estimator and the validity of the
EMM diagnostic tests that have used efficient scores to estimate the asymptotic
variance-covariance matrices+ But we emphasize that the consistency of the
EMM estimator is not affected+

9. CONCLUSIONS

The correlation integral–based test by Brock et al+ ~1991, 1996! has been re-
cently proposed as a portmanteau test for the adequacy of nonlinear time series
models+ The test has the nice “nuisance-parameter-free” property in the sense
that parameter estimation uncertainty of conditional mean models has no im-
pact on its limit distribution+ It has been documented to have high power against
a wide variety of linear and nonlinear alternatives of practical importance+

In this paper, we have proposed a new diagnostic test for the adequacy of
linear and nonlinear time series models, using a new generalized spectral den-
sity approach+ The test has the “nuisance-parameter-free” property under a wider
class of time series models than the BDS test, which includes but is not re-
stricted to ARCH and ACD models+ It is consistent against any type of pairwise
serial dependence across various lags in the model standardized residuals, and
it has better asymptotic local power than the BDS test in testing many condi-
tional mean models~but not ARCH models!+ The generalized spectral smooth-
ing allows the choice of a lag order via data-driven methods, which let data
themselves speak for a proper lag order and give more robust power+ A simu-
lation experiment examines the finite-sample performance of the proposed test
and the tests of BDS, Box–Pierce–Ljung, McLeod–Li, and Li–Mak+ The gen-
eralized spectral test has omnibus good power against a variety of stochastic
and chaotic alternatives to the null models of conditional mean and conditional
variance+ It is a useful addition to the existing diagnostic tool kit for time series
models and can play a valuable role in evaluating the adequacy of linear and
nonlinear time series models+ An empirical application to the daily S&P 500
index highlights the merits of our approach+
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NOTES

1+ A partial list of the papers using this procedure, as given in Tse and Zuo~1997, p+ 238!,
includes Bollerslev~1987!, Hsieh ~1989!, Hamao, Masulis, and Ng ~1990!, Lee and Tse~1991!,
Cheung and Ng~1992!, Higgins and Bera~1992!, and Karolyi~1995!+

2+ It should be emphasized, as correctly pointed out by one referee, that the BDS test is not a
test for chaos against stochastic alternatives+ This is the case because the test does not have chaos
as the null hypothesis+ Instead, the null hypothesis of the BDS test is i+i+d+, and when it is rejected,
chaos is just one of infinitely many possible reasons for the rejection+

3+ The same problem is expected to occur when the BDS test is applied to a fitted ACD model+
4+ Robinson~1991! and Pagan~1996! interpret the BDS test from a kernel-based density esti-

mation perspective in whichd is equivalent to a fixed bandwidth in a uniform kernel-based prob-
ability density estimation+

5+ There has been increasing interest in using the characteristic function in time series analy-
sis ~e+g+, Epps, 1987, 1988; Feuerverger, 1990; Jiang and Knight, 2002; Knight and Satchell, 1997;
Knight and Yu, 2002; Pinkse, 1998; Singleton, 2001!+

6+ In a not unrelated context, Priestley~1988, p+ 143! discusses the physical interpretation of
frequencyv for nonlinear time series+ In our context, the generalized spectrum is essentially the
cross spectrum between the transformed variableseiuet andeivet2j, which measures the correlation
betweenv-frequency components ofeiuet and eivet2j + Because the exponential function can be
written as a sum of polynomials using a Taylor series expansion, it is expected that the generalized
spectrum is able to effectively capture cycles and periodicities in higher moments~e+g+, volatility
clustering cycles! of $et % +

7+ We examine via simulation in Section 7 the impact of choosing different weighting func-
tions W~{! on the level and power of the proposed test+

8+ Testing for i+i+d+ when the marginal distribution of a generalized residual series is uniform
has been of interest in the literature of evaluating probability density forecasts~e+g+, Clement and
Smith, 2000; Diebold et al+, 1998; Elerian et al+, 2001; Kim et al+, 1998!+

9+ From a theoretical point of view, the choice of [p based on the IMSE criterion may not
maximize the power of the test+ A more sensible alternative is to develop a data-driven[p using a
suitable power criterion or a criterion that trades off level distortion and power+ This will necessi-
tate higher order asymptotic analysis and is beyond the scope of this paper+We are content with the
IMSE criterion here+ Our simulation study shows that the power of the proposed test is relatively
flat in the neighborhood of the optimal lag order that maximizes the power, and the data-driven[p
based on IMSE performs reasonably well+

10+ We have also tried the Bartlett, Parzen and quadratic-spectral kernels; they give level and
power very similar to that of the Daniell kernel+

11+ The results at the 10% and 1% levels and the results forn 5 200 are available from the
authors+ The results at the 10% and 1% levels have similar patterns, and the levels withn 5 200 are
very similar to those withn 5 100+

12+ The main reason that Anderson et al+ ~2002! first remove the first-order autocorrelation
from the raw-observed returns is for convenient specification and estimation of continuous-time
models+ This is not the only way to go, but any reasonable approach will not affect the estimation
results much+ Moreover, it is a common practice to find that the conditional mean specification has
little effect on the rest of the estimated model when using daily financial data+

13+ Let T be one of the statistics~ ZM~ [p0!, BPL~ p!, LM ~ p, r !, BDS~m,d!! based on the ob-
served sample$Yt %t51

n + The bootstrapp-value ofT is computed as follows: ~i! Estimate the MA~1!-
EGARCH~ p,q! model and get the estimated standardized residuals$ [et %t51

n + ~ii ! Resample$ [et %t51
n

with replacement to get$ [et
b%t51

n + ~iii ! Generate the bootstrap samples$Yt
b%t51

n recursively from the
estimated MA~1!-EGARCH~ p,q! model using$ [et

b%t51
n + ~iv! Estimate the MA~1!-EGARCH~ p,q!

model using the bootstrapped data$Yt
b%t51

n to get the standardized residuals$ [et
b%t51

n + ~v! Compute
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the statisticT b using $ [et
b%t51

n + Repeat the steps~ii !–~v! B times ~i+e+, b 5 1, + + + ,B!, whereB is the
number of bootstrap replications+ We useB 5 500+ The bootstrapp-value of the statisticT is then
obtained fromB21 (b51

B 1~T b $ T !+
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APPENDIX

Throughout the Appendix, we let M~ p! be defined in the same way asZM~ p! in ~2+9!,
with the unobservable sample$et 5 et ~u0!%t51

n replacing the standardized residual sam-
ple $ [et %t51

n , whereu0 5 p lim Zu+ Also, C denotes a generic bounded constant that may
differ from place to place+

Proof of Theorem 1. It suffices to show Theorems A+1 and A+2, which follow+ Theo-
rem A+1 implies that the use of$ [et %t51

n rather than$et %t51
n has no impact on the limit

distribution of ZM~ p!+

THEOREM A+1+ Under the conditions of Theorem 1,ZM~ p! 2 M~ p!
p
&& 0.

THEOREM A+2+ Under the conditions of Theorem 1, M~ p! d
&& N~0,1!.

Proof of Theorem A.1. Noting thatet~u! [ @Yt 2 g~It21,u!#0h~It21,u!, whereIt is
the unobservable information set from periodt to the infinite past, we write

[et [
Yt 2 g~ ZIt21, Zu!

h~ ZIt21, Zu!
5

Yt 2 g~It21, Zu!

h~ ZIt21, Zu!
1

g~It21, Zu! 2 g~ ZIt21, Zu!

h~ ZIt21, Zu!

5 et ~ Zu! 1 et ~ Zu!
h~It21, Zu! 2 h~ ZIt21, Zu!

h~ ZIt21, Zu!
1

g~It21, Zu! 2 g~ ZIt21, Zu!

h~ ZIt21, Zu!
+ (A.1)

By the mean value theorem,

et ~ Zu! 5
Yt 2 g~It21,u0!

h~It21,u0!
1 jt ~ Nu!'~ Zu 2 u0! 5 et ~u0! 1 jt ~ Nu!'~ Zu 2 u0! (A.2)

for some Nu between Zu andu0, where

jt ~u! [
]

]u
et ~u! 5 et ~u!h21~It21,u!

]

]u
h~It21,u! 2 h21~It21,u!

]

]u
g~It21,u!+
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It follows from ~A+1!, ~A+2!, and the Cauchy–Schwarz inequality that

(
t51

n

@ [et 2 et ~ Zu!# 2

# 2 (
t51

n

et
2~ Zu!* h~It21, Zu! 2 h~ ZIt21, Zu!

h~ ZIt21, Zu! *
2

1 2 (
t51

n

* g~It21, Zu! 2 g~ ZIt21, Zu!

h~ ZIt21, Zu! *
2

# 4 (
t51

n

et
2~u0! sup

u[Q0
F h~It21,u! 2 h~ ZIt21,u!

h~ ZIt21,u! G2

1 47 Zu 2 u072F(
t51

n

sup
u[Q0

7jt ~u!74G102H(
t51

n

sup
u[Q0

F h~It21,u! 2 h~ ZIt21,u!

h~ ZIt21,u! G4J102

1 2 (
t51

n

sup
u[Q0

F g~It21,u! 2 g~ ZIt21,u!

h~ ZIt21,u! G2

5 OP~1!, (A.3)

given Assumptions A+1–A+4, where we made use ofE supu[Q0
7jt ~u!74 # C given

Assumption A+3+ Here, the first term in the second inequality isOP~1! by Markov’s
inequality, independence betweenet~u0! 5 «t and ~It21, ZIt21!, and Assumption A+4+ On
the other hand, by ~A+2! and Assumptions A+2–A+4, we have

(
t51

n

@et ~ Zu! 2 et ~u0!# 2 # n7 Zu 2 u072Fn21 (
t51

n

sup
u[Q0

7jt ~u!72G5 OP~1!+ (A.4)

Both ~A+3! and~A+4! imply

(
t51

n

@ [et 2 et ~u0!# 2 5 OP~1!+ (A.5)

Put nj 5 n 2 6 j 6+ Observe thatp r `, p0n r 0, p21 (j51
n21 kr ~ j0p! r *0

` kr ~z! dz
for r 5 2,4 given Assumption A+3+ To show ZM~ p! 2 M~ p!

p
&& 0, it suffices to show that

p2102E (
j51

n21

k2~ j0p!nj @6 [sj ~u, v!62 2 6 Isj ~u, v!62# dW~u! dW~v!
p
&& 0, (A.6)

ZC0 2 DC0 5 OP~n2102!, and ZD0 2 ED0
p
&& 0, where DC0 and ED0 are defined in the same way

as ZC0 and ZD0 in ~2+10! and~2+11!, with $et %t51
n replacing$ [et %t51

n + For space, we focus on
the proof of~A+6!; the proofs for ZC0 2 DC0 5 OP~n2102! and ZD0 2 ED0

p
&& 0 are straight-

forward+We note that here it is necessary to obtain the convergence rate forZC0 2 DC0 to
ensure that replacingZC0 with DC0 has asymptotically negligible impact givenp0n r 0+

To show~A+6!, we first decompose

E (
j51

n21

k2~ j0p!nj @6 [sj ~u, v!62 2 6 Isj ~u, v!62# dW~u! dW~v! 5 ZA1 1 2 Re~ ZA2!, (A.7)
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where

ZA1 5E (
j51

n21

k2~ j0p!nj 6 [sj ~u, v! 2 Isj ~u, v!62 dW~u! dW~v!, (A.8)

ZA2 5E (
j51

n21

k2~ j0p!nj @ [sj ~u, v! 2 Isj ~u, v!# [sj ~u, v!* dW~u! dW~v!, (A.9)

where Re~ ZA2! is the real part of ZA2 and [sj ~u, v!* is the complex conjugate of[sj ~u, v!+
Then, ~A+6! follows from Propositions A+1–A+2, which appear subsequently, andp r `
asn r `+

PROPOSITION A+1+ Under the conditions of Theorem 1,ZA1 5 OP~1!+

PROPOSITION A+2+ Under the conditions of Theorem 1, p2102 ZA2
p
&& 0+

Proof of Proposition A.1. Put Zdt~u! 5 eiu [et 2 eiuet andwt~u! 5 eiuet 2 w~u!, where,
as before, w~u! 5 E~eiuet !+ Let Isj ~u, v! be defined in the same way as[sj ~u, v! in ~2+5!,
with $et %t51

n replacing$ [et %t51
n + Then straightforward algebra yields

[sj ~u, v! 2 Isj ~u, v!

5 nj
21 (

t5j11

n

Zdt ~u! Zdt2j ~v! 2 Fnj
21 (

t5j11

n

Zdt ~u!GFnj
21 (

t5j11

n

Zdt2j ~v!G
1 nj

21 (
t5j11

n

wt ~u! Zdt2j ~v! 2 Fnj
21 (

t5j11

n

wt ~u!GFnj
21 (

t5j11

n

Zdt2j ~v!G
1 nj

21 (
t5j11

n

Zdt ~u!wt2j ~v! 2 Fnj
21 (

t5j11

n

Zdt ~u!GFnj
21 (

t5j11

n

wt2j ~v!G
5 ZB1j ~u, v! 2 ZB2j ~u, v! 1 ZB3j ~u, v! 2 ZB4j ~u, v! 1 ZB5j ~u, v! 2 ZB6j ~u, v!, say+

(A.10)

It follows from ~A+10! that

ZA1 # 25 (
a51

6 E (
j51

n21

k2~ j0p!nj 6 ZBaj ~u, v!62 dW~u! dW~v!+

Proposition A+1 follows from Lemmas A+1–A+6, which appear subsequently, and
p0n r 0+ We shall show these lemmas under the conditions of Theorem 1+

LEMMA A +1+ *(j51
n21 k2~ j0p!nj 6 ZB1j ~u, v!62 dW~u! dW~v! 5 OP~ p0n!+

LEMMA A +2+ *(j51
n21 k2~ j0p!nj 6 ZB2j ~u, v!62 dW~u! dW~v! 5 OP~ p0n!+

LEMMA A +3+ *(j51
n21 k2~ j0p!nj 6 ZB3j ~u, v!62 dW~u! dW~v! 5 OP~ p0n!+

LEMMA A +4+ *(j51
n21 k2~ j0p!nj 6 ZB4j ~u, v!62 dW~u! dW~v! 5 OP~ p0n!+

LEMMA A +5+ *(j51
n21 k2~ j0p!nj 6 ZB5j ~u, v!62 dW~u! dW~v! 5 OP~1!+

LEMMA A +6+ *(j51
n21 k2~ j0p!nj 6 ZB6j ~u, v!62 dW~u! dW~v! 5 OP~ p0n!+
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Proof of Lemma A.1. By the Cauchy–Schwarz inequality and inequality
6eiz1 2 eiz2 6 # 6z1 2 z26 for any complex-valued variablesz1 andz2, we have

6 ZB1j ~u, v!62 # Fnj
21 (

t51

n

6 Zdt ~u!62GFnj
21 (

t51

n

6 Zdt ~v!62G
# ~uv!2Fnj

21 (
t51

n

~ [et 2 et !
2G2

+ (A.11)

It follows from ~A+11!, ~A+5!, and Assumptions A+5 and A+6 that

E (
j51

n21

k2~ j0p!nj 6 ZB1j ~u, v!62 dW

# F (
j51

n21

k2~ j0p!nj
21GF(

t51

n

~ [et 2 et !
2G2FEu2 dW~u!G2

5 OP~ p0n!,

where we made use of the fact that

(
j51

n21

k2~ j0p!nj
21 5 O~ p0n! (A.12)

given Assumption A+3 andp 5 cnl for l [ ~0,1!, as shown in Hong~1999, ~A+15!,
p+ 1213!+ n

Proof of Lemma A.2. Similar to the proof of Lemma A+1+ n
Proof of Lemma A.3. Using inequality6eiz 2 1 2 iz6 # 6z62 for any complex-

valued variablez, we have

6 Zdt ~u! 2 iu~ [et 2 et !e
iuet 6 # u2~ [et 2 et !

2+ (A.13)

Also, a second-order Taylor expansion yields

et ~ Zu! 5 et ~u0! 1 jt ~u0!'~ Zu 2 u0! 1
1

2
~ Zu 2 u0!'

]

]u
jt ~ Nu!~ Zu 2 u0! (A.14)

for some Nu between Zu andu0, wherejt~u! is as in~A+2!+ Both ~A+13! and~A+14! imply

6 Zdt ~u! 2 iu Djt ~u!~ Zu 2 u0!6 # u2 @ [et 2 et ~u0!# 2 1 6u6 6 [et 2 et ~ Zu!6

1 6u6 7 Zu 2 u072 sup
u[Q0

** ]

]u
jt ~u!**, (A.15)

where Djt~u! 5 jt ~u0!eiuet+ Therefore, from the definition of ZB3j ~u, v! and 6wt~u!6 # C,
we obtain

nj 6 ZB3j ~u, v!6 # 6v6 7 Zu 2 u07* (
t5j11

n

wt ~u! Djt2j ~v!*1 v2 (
t51

n

~ [et 2 et !
2

1 6v6(
t51

n

6 [et 2 et~ Zu! 61 6v6 7 Zu 2 u072 (
t51

n

sup
u[Q0

** ]

]u
jt ~u!**+ (A.16)
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It follows from ~A+3!, ~A+5!, ~A+12!, and~A+16!, and Assumptions A+1–A+6 that

E (
j51

n21

k2~ j0p!nj 6 ZB3j ~u, v!62 dW

# 87 Zu 2 u072 (
j51

n21

k2~ j0p!nj
21E * (

t5j11

n

wt ~u! Djt2j ~v!*
2

v2 dW~u! dW~v!

1 8F(
t51

n

~ [et 2 et ~u0!!2G2F (
j51

n21

k2~ j0p!nj
21GEv4 dW~u! dW~v!

1 8S(
t51

n

6 [et 2 et ~ Zu!6D2F (
j51

n21

k2~ j0p!nj
21GEv2 dW~u! dW~v!

1 87Mn~ Zu 2 u0!74Fn21 (
t51

n

sup
u[Q0

** ]

]u
jt ~u!**G2F (

j51

n21

k2~ j0p!nj
21G

3 Ev2 dW~u! dW~v! 5 OP~ p0n!,

where we made use of the fact thatE6(t5j11
n wt ~u! Djt2j ~v!62 # Cnj becausewt~u! is

independent of Djt2j ~v! for j . 0 under the i+i+d+ hypothesis of$et %t51
n +We also made use

of the fact that from~A+1!, the Cauchy–Schwarz inequality, and Assumption A+3

(
t51

n

6 [et 2 et ~ Zu!6 # (
t51

n

6et ~ Zu!6* h~It21, Zu! 2 h~ ZIt21, Zu!

h~ ZIt21, Zu! *1 (
t51

n

* g~It21, Zu! 2 g~ ZIt21, Zu!

h~ ZIt21, Zu! *
# (

t51

n

6et ~u0!6 sup
u[Q0

* h~It21,u! 2 h~ ZIt21,u!

h~ ZIt21,u! *
1 7 Zu 2 u07F(

t51

n

sup
u[Q0

7jt ~u!72G102

3 H(
t51

n

sup
u[Q0

F g~It21,u! 2 g~ ZIt21,u!

h~ ZIt21,u! G2J102

1 (
t51

n

sup
u[Q0

* g~It21,u! 2 g~ ZIt21,u!

h~ ZIt21,u! *5 OP~1!+ (A.17)

Here, the first term in the second inequality isOP~1! by Markov’s inequality, indepen-
dence betweenet~u0! 5 «t and~It21, ZIt21!, and Assumption A+3+ n

Proof of Lemma A.4. By the Cauchy–Schwarz inequality, we have

6 ZB4j ~u, v!62 # *nj
21 (

t5j11

n

wt ~u!*
2Fnj

21 (
t51

n

6 Zdt ~v!62G + (A.18)
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It follows from ~A+18!, the Cauchy–Schwarz inequality, and 6 Zdt~v!6 # 6v [et 2 vet 6 that

E (
j51

n21

k2~ j0p!nj 6 ZB4j ~u, v!62 dW# (
j51

n21

k2~ j0p!E *nj
21 (

t5j11

n

wt ~u!*
2

v2 dW~u! dW~v!

3 (
t51

n

~ [et 2 et !
2 5 OP~ p0n!

given ~A+5!, ~A+12!, andE6(t5j11
n wt2j ~u!62 # Cnj under the i+i+d+ hypothesis of$et %+

n
Proof of Lemma A.5. Using ~A+15!, we have

E (
j51

n21

k2~ j0p!nj 6 ZB5j ~u, v!62 dW~u! dW~v!

# 87 Zu 2 u072 (
j51

n21

k2~ j0p!nj
21E * (

t5j11

n

Djt ~u!wt2j ~v!*
2

u2 dW~u! dW~v!

1 8F(
t51

n

~ [et 2 et ~u0!!2G2F (
j51

n21

k2~ j0p!nj
21GEu4 dW~u! dW~v!

1 8S(
t51

n

6 [et 2 et ~ Zu!6D2F (
j51

n21

k2~ j0p!nj
21GEu2 dW~u! dW~v!

1 87Mn~ Zu 2 u0!74Fn21 (
t51

n

sup
u[Q0

** ]

]u
jt ~u!**G2

3 F (
j51

n21

k2~ j0p!nj
21GEu2 dW~u! dW~v! 5 OP~1!, (A.19)

where the last three terms areOP~ p0n! given ~A+5!, ~A+17!, and ~A+12!, and Assump-
tions A+1–A+6 and the first term isOP~1!, as is shown subsequently+

Put hj ~u, v! 5 E @ Djt~u!wt2j ~v!# + Note that Djt~u! is a function ofIt21 and thus is not
independent ofwt2j ~v!+ By the standarda-mixing inequality, we have

6hj ~u, v!6 # @E6 Djt ~u!62n #102n @E6wt2j ~v!62n #102na~ j !~n21!0n # Ca~ j !~n21!0n+ (A.20)

Moreover, given Assumptions A+1 and A+2, we have

E*nj
21 (

t5j11

n

@ Djt ~u!wt2j ~v! 2 hj ~u, v!#*
2

# Cnj
21, (A.21)

using reasoning analogous to~A+7!–~A+10! in the proof of Theorem 1 of Hong~1999,
pp+ 1212–1213!+ Consequently, from ~A+20! and~A+21!, we have

(
j51

n21

k2~ j0p!EE *nj
21 (

t5j11

n

Djt ~u!wt2j ~v!*
2

u2 dW~u! dW~v!

# C (
j51

n21 E6hj ~u, v!62v2 dW~u! dW~v! 1 C (
j51

n21

k2~ j0p!nj
21

5 O~1! 1 O~ p0n! 5 O~1!+
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It follows that the first term in~A+19! is OP~1! by Markov’s inequality+ n

Proof of Lemma A.6. The proof is analogous to that of Lemma A+4+ n

Proof of Proposition A.2. Given ~A+10!, we have

6@ [sj ~u, v! 2 Isj ~u, v!# Isj ~u, v!* 6 # (
a51

6

6 ZBaj ~u, v!6 6 Isj ~u, v!6, (A.22)

where the ZBaj~u, v! are defined in~A+10!+ For a 5 1, 2, 3, 4, and 6, we have, by the
Cauchy–Schwarz inequality,

(
j51

n21

k2~ j0p!njE6 ZBaj ~u, v!6 6 Isj ~u, v!6 dW~u! dW~v!

# F (
j51

n21

k2~ j0p!njE6 ZBaj ~u, v!62 dW~u! dW~v!G102

3 F (
j51

n21

k2~ j0p!njE6 Isj ~u, v!62 dW~u! dW~v!G102

5 OP~ p1020n102!OP~ p102! 5 oP~ p102!,

given Lemmas A+1–A+4 and A+6, and p0n r 0, where p21 (j51
n21 k2~ j0p!nj 3

*6 Isj ~u, v!62 dW 5 OP~1! as follows from Markov’s inequality, the i+i+d+ hypothesis of
$et %, and~A+12!+

It remains to considera5 5+ Using~A+15!, the triangular inequality, ~A+5!, and~A+17!,
we have

(
j51

n21

k2~ j0p!nj 6 ZB5j ~u, v!6 6 Isj ~u, v!6

# 7 Zu 2 u07 (
j51

n21

k2~ j0p!njE *nj
21 (

t5j11

n

Djt ~u!wt2j ~v!*6 Isj ~u, v!6 6u6 dW~u! dW~v!

1 H(
t51

n

@ [et 2 et ~u0!# 2J (
j51

n21

k2~ j0p!njE6 Isj ~u, v!6u2 dW~u! dW~v!

1 F(
t51

n

6 [et 2 et ~ Zu!6G (
j51

n21

k2~ j0p!njE6 Isj ~u, v!6 6u6 dW~u! dW~v!

1 7 Zu 2 u072F(
t51

n

sup
u[Q0

** ]

]u
jt ~u!**G (

j51

n21

k2~ j0p!njE6 Isj ~u, v!6 6u6 dW~u! dW~v!

5 OP~11 p0n102! 1 OP~ p0n102! 1 OP~ p0n102! 1 OP~ p0n102! 5 oP~ p102!

givenp r `, p0n r 0, and Assumptions A+1–A+6, where we have made use of the fact
that nj E6 Isj ~u, v!62 # C under the i+i+d+ hypothesis of$et % + Note that here for the first
term in the first inequality, we have made use of the fact that
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EF*nj
21 (

t5j11

n

Djt ~u!wt2j ~v!*6 Isj ~u, v!6G
# FE*nj

21 (
t5j11

n

Djt ~u!wt2j ~v!*
2G102

@E6 Isj ~u, v!62#102

# C@a~ j !~n21!0n 1 nj
2102#nj

2102

given ~A+20! and~A+21!, and consequently,

n2102 (
j51

n21

k2~ j0p!nj EEF*nj
21 (

t5j11

n

Djt ~u!wt2j ~v!*6 Isj ~u, v!6G6u6 dW~u! dW~v!

# C (
j51

n21

a~ j !~n21!0n 1 Cn2102 (
j51

n21

k2~ j0p! 5 O~1! 1 O~ p0n102!

given(j51
` a~ j !~n21!0n , `, 6k~{!6 # 1, and~A+12!+ n

Proof of Theorem A.2. See Hong~1999, proof of Theorem 3, for the case~m, l ! 5
~0,0!!+ n

Proof of Theorem 2. The proof of Theorem 2 consists of the proofs of Theorems
A+3 and A+4, which follow+

THEOREM A+3+ Under the conditions of Theorem 1,~ p1020n!@ ZM~ p! 2 M~ p!#
p
&& 0+

THEOREM A+4+ Under the conditions of Theorem 1,

~ p1020n!M~ p!
p
&& ~p!EE

2p

p

6 f ~v,u, v! 2 f0~v,u, v!62 dv dW~u! dW~v!+

Proof of Theorem A.3. Given thatp r `, p0n r 0, and p21 (j51
n21 kr ~ j0p! r

*0
` kr ~z! dz, it suffices to show that

n21E (
j51

n21

k2~ j0p!nj @6 [sj ~u, v!62 2 6 Isj ~u, v!62# dW~u! dW~v!
p
&& 0, (A.23)

ZC0 2 DC0 5 OP~1!, and ZD0 2 ED0
p
&& 0, where DC0 and ED0 are defined in the same way

as ZC0 and ZD0 in ~2+10! and ~2+11!, with $et %t51
n replacing$ [et %t51

n + Because the proofs
for ZC0 2 DC0 5 OP~1! and ZD0 2 ED0

p
&& 0 are straightforward, we focus on the

proof of ~A +23!+ From ~A +7!, the Cauchy–Schwarz inequality, and the fact that
n21*(j51

n21 k2~ j0p!nj 6 Isj ~u, v!62 dW~u! dW~v! 5 OP~1! as is implied by Theorem A+4
~the proof of Theorem A+4 does not depend on Theorem A+3!, it suffices to show that

n21 ZA1
p
&& 0, (A.24)

where ZA1 is defined in~A+8!+ Given ~A+10!, we shall show that

n21E (
j51

n21

k2~ j0p!nj 6 ZBaj ~u, v!62 dW~u! dW~v!
p
&& 0, a 5 1,2, + + + ,6+
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We first considera 5 1+ By the Cauchy–Schwarz inequality and6 Zdt ~u!6 #
6u [et 2 uet 6, we have

6 ZB1j ~u, v!62 # Fnj
21 (

t5j11

n

6 Zdt ~u!62GFnj
21 (

t5j11

n

6 Zdt ~v!62G # nj
22~uv!2F(

t51

n

~ [et 2 et !
2G2

,

(A.25)

where

n2102 (
t51

n

~ [et 2 et !
2 5 OP~1! (A.26)

as can be shown in a way similar to that for~A+5!, given the condition thatE~et
4! # C+

Note that compared to~A+5!, a factor ofn2102 arises here because we no longer have
independence betweenet and$It21, ZIt21%, and we thus have to use the Cauchy–Schwarz
inequality+ It follows from ~A+25!, ~A+26!, ~A+5!, and~A+12! that

n21E (
j51

n21

k2~ j0p!nj 6 ZB1j ~u, v!62 dW~u! dW~v!

# Fn2102 (
t51

n

~ [et 2 et !
2G2

(
j51

n21

k2~ j0p!nj
21FEu2 dW~u!G2

5 OP~ p0n!+

The proof fora 5 2 is similar to that fora 5 1, by noting that6nj
21 (t5j11

n Zdt ~u!62 #
nj

21 (t5j11
n 6 Zdt ~u!62+

Next, we considera 5 3+ By the Cauchy–Schwarz inequality and6wt~u!6 # C, we
have

6B3j ~u, v!62 # Fnj
21 (

t5j11

n

6wt ~u!62GFnj
21 (

t5j11

n

6 Zdt2j ~v!62G # v2nj
21 (

t51

n

~ [et 2 et !
2+

(A.27)

It follows that

n21E (
j51

n21

k2~ j0p!nj 6 ZB3j ~u, v!62 dW~u! dW~v!

# n21 (
t51

n

~ [et 2 et !
2 (

j51

n21

k2~ j0p!Ev2 dW~u! dW~v! 5 OP~ p0n102!+

The proof fora5 4, 5, 6 is similar to that fora5 3, by noting that6nj
21 (t5j11

n Zdt ~u!62 #
nj

21 (t5j11
n 6 Zdt ~u!62+ This completes the proof for Theorem A+3+ n

Proof of Theorem A.4. See Hong~1999, proof of Theorem 5, for ~m, l ! 5 ~0,0!!+
n

Proof of Theorem 3. The proof of Theorem 3 consists of Theorems A+5 and A+6,
which follow+

THEOREM A+5+ Under the conditions of Theorem 3,ZM~ p! 2 M~ p!
p
&& 0+

THEOREM A+6+ Under the conditions of Theorem 3, M~ p! d
&& N~m,1!+
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Proof of Theorem A.5. The proof is more tedious than but similar to that of Theo-
rem A+1+ We omit it here+ n

Proof of Theorem A.6. Define

Tsj ~u, v! 5 nj
21 (

t5j11

n

ct ~u!ct2j ~v!, j 5 0,1, + + + , n 2 1,

wherect~u! 5 eiuet 2 w~u!+ Recall thatM~ p! is defined in the same way asZM~ p! in
~2+9! with $et %t51

n replacing$ [et %t51
n + We let RM~ p! be defined in the same way asZM~ p!

with $ Tsj ~u, v!%j50
n21 replacing$ [sj ~u, v!%j51

n21+ Then it suffices to show Propositions A+3 and
A+4, which follow+

PROPOSITION A+3+ Under the conditions of Theorem 3, M~ p! 2 RM~ p!
p
&& 0+

PROPOSITION A+4+ Under the conditions of Theorem 3,RM~ p! d
&& N~m,0!+

Proof of Proposition A.3. Given that p r `, p0n r 0, p21 (j51
n21 kr ~ j0p! r

*0
` kr ~z! dz for r 5 2,4, it suffices to show

p2102E (
j51

n21

k2~ j0p!nj @6 Isj ~u, v!62 2 6 Tsj ~u, v!62# dW~u! dW~v!
p
&& 0, (A.28)

DC0 2 OC0 5 OP~1!, and ED0 2 PD0
p
&& 0, where OC0 and PD0 are defined in the same way as

ZC0 and ZD0 in ~2+10! and~2+11! with Ts0~u, v! replacing [s0~u, v!+We focus on the proof of
~A+28! only+ By straightforward algebra, we have

E (
j51

n21

k2~ j0p!nj @6 Isj ~u, v!62 2 6 Tsj ~u, v!62# dW~u! dW~v! 5 ZB1 1 2 Re~ ZB2!, (A.29)

where

ZA1 5E (
j51

n21

k2~ j0p!nj 6 Isj ~u, v! 2 Tsj ~u, v!62 dW~u! dW~v!,

ZB2 5E (
j51

n21

k2~ j0p!nj @ Isj ~u, v! 2 Tsj ~u, v!# Tsj ~u, v!* dW~u! dW~v!+

Because Isj ~u, v! 5 Tsj ~u, v! 2 @nj
21 (t5j11

n ct ~u!# @nj
21 (t5j11

n ct2j ~v!# , we have

E6 Isj ~u, v! 2 Tsj ~u, v!62 # FE*nj
21 (

t5j11

n

ct ~u!*
4G102FE*nj

21 (
t5j11

n

ct2j ~v!*
4G102

# Cnj
22, (A.30)

where E6(t5j11
n ct ~u!64 # Cnj

2 because$ct~u!% is a bounded one-dependent random
sequence with mean 0+ It follows from Markov’s inequality, ~A +30!, ~A +12!, and
p0n r 0 that

ZB1 5 OP~ p0n! 5 oP~1!+ (A.31)
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Next we consider ZB2 in ~A+29!+ Observe that

6 Tsj ~u, v!62 # 26sj ~u, v!62 1 26 Tsj ~u, v! 2 sj ~u, v!62+ (A.32)

Also, because$ct~u!% is one-dependent, we have

sj ~u, v! 5 HE @ct ~u!ct21~v!# , j 5 1

0, j . 1
(A.33)

and

E6 Tsj ~u, v! 2 sj ~u, v!62

5 *nj
21 (

t5j11

n

@ct ~u!ct2j ~v! 2 sj ~u, v!#*
2

# Cnj
21 (A.34)

given that ct ~u!ct2j ~v! and cs~u!cs2j ~v! are mutually independent unlesst 5 s,
s 6 1, s 6 j , ands 1 1 6 j, s 2 1 6 j+ It follows from ~A+32!–~A+34!, 6k~z!6 # 1, and
Markov’s inequality that

E (
j51

n21

k2~ j0p!nj 6 Tsj ~u, v!62 dW~u! dW~v!

# 2E (
j51

n21

k2~ j0p!nj 6sj ~u, v!62 dW~u! dW~v!

1 2E (
j51

n21

k2~ j0p!nj 6 Tsj ~u, v! 2 sj ~u, v!62 dW~u! dW~v!

# 2nE6s1~u, v!62 dW~u! dW~v!

1 2E (
j51

n21

k2~ j0p!nj 6 Tsj ~u, v! 2 sj ~u, v!62 dW~u! dW~v!

5 O~ p102! 1 OP~ p!, (A.35)

where we used the fact thatn* 6s1~u, v!62 dW~u! dW~v! 5 O~ p102! under
Hn~ p1040n102!+ Combining ~A+31!, ~A+35!, p0n r 0, and Cauchy–Schwarz inequality,
we obtain

p2102 6 ZB26 # 6 ZA16102Fp21E (
j51

n21

k2~ j0p!nj 6 Tsj ~u, v!62G102

5 OP~ p1020n102! 5 oP~1!+

This completes the proof for Proposition A+3+ n
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Proof of Proposition A.4 We write

E (
j51

n21

k2~ j0p!nj 6 Tsj ~u, v!62 dW~u! dW~v! 2 OC0 (
j51

n21

k2~ j0p!

5 k2~10p!Fn1E6 Ts1~u, v!62 dW~u! dW~v! 2 OC0G
1 k2~20p!Fn2E6 Ts2~u, v!62 dW~u! dW~v! 2 OC0G
1 (

j53

n21

k2~ j0p!FnjE6 Tsj ~u, v!62 dW~u! dW~v! 2 OC0G +
Given thatp r `, p0n r 0, p21 (j51

n21 kr ~ j0p! r *0
` kr ~z! dz for r 5 2,4, OC0 2 C0 5

OP~n2102!, and PD0 2 D0
p
&& 0, whereC0 andD0 are defined in the same way asZC0 and

ZD0 in ~2+10! and ~2+11! with s0~u, v! replacing [s0~u, v!, it suffices to show Lemmas
A+7–A+11, which follow+ These lemmas hold underHn~ p1040n102!+

LEMMA A +7+ p2102k2~10p!@n1*6 Ts1~u, v!62 dW~u! dW~v! 2 C0#
p
&&

@2D0 *0
` k4~z! dz#102m+

LEMMA A +8+ p2102k2~20p!@n2*6 Ts2~u, v!62 dW~u! dW~v! 2 C0#
p
&& 0+

LEMMA A +9+ Define

ZV 5 (
j53

n22

k2~ j0p!nj
21 (

t5j13

n

(
s5j11

t22 EVtsj~u, v! dW~u! dW~v!,

where Vtsj~u, v! 5 Ctsj~u, v! 1 Cstj~u, v!* and Ctsj~u, v! 5 ct~u!cs~u!*ct2j ~v!cs2j ~v!*+ Then

p2102 (
j53

n21

k2~ j0p!FnjE6 Tsj ~u, v!6 dW~u! dW~v! 2 C0G 5 p2102 ZV 1 oP~1!+

LEMMA A +10+ p2102 ZV 5 p2102 ZVg 1 oP~1!, where

ZVg 5 (
j53

g

(
t5g12

n

(
s51

t2g21

k2~ j0p!nj
21EVtsj~u, v! dW~u! dW~v!

and g0p r `, g0n r 0 as nr `.

LEMMA A +11+ @2pD0 *0
` k4~z! dz#2102 ZVg

d
&& N~0,1!+

Proof of Lemma A.7. Becausep2102k2~10p!C0 r 0 andk~10p! r 1, it suffices to
show

p2102n1E6 Ts1~u, v!62 dW~u! dW~v!
p
&& F2D0E

0

`

k4~z! dzG102

m+
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Because 6 Ts1~u, v!62 2 6s1~u, v!62 5 6 Ts1~u, v! 2 s1~u, v!62 1 2 Re$ @ Ts1~u, v! 2
s1~u, v!#s1~u, v!*%, we have

*p2102n1E6 Ts1~u, v!62 dW~u! dW~v! 2 p2102n1E6s1~u, v!62 dW~u! dW~v!*
# p2102n1E6 Ts1~u, v! 2 s1~u, v!62 dW~u! dW~v!

1 2Fp2102n1E6 Ts1~u, v! 2 s1~u, v!62 dW~u! dW~v!G102

3 Fp2102n1E6s1~u, v!62 dW~u! dW~v!G102

5 OP~ p2102! 1 OP~ p2104!, (A.36)

where the equality follows from~A+34! and

p2102n1E6s1~u, v!62 dW~u! dW~v! r F2D0E
0

`

k4~z! dzG102

m (A.37)

underHn~ p1040n102!+ Combining~A+36!, ~A+37!, andp r ` yields the desired result+
n

Proof of Lemma A.8. The proof is similar to and simpler than that of Lemma A+7
becauses2~u, v! 5 0 given that$ct~u!% is one-dependent+ n

Proof of Lemma A.9. Given the definitions ofCtsj~u, v! and Vtsj~u, v!, we can
decompose

(
j53

n21

k2~ j0p!njE6 Tsj ~u, v!62 dW~u! dW~v!

5 (
j53

n21

k2~ j0p!nj
21 (

t5j11

n ECttj ~u, v! dW~u! dW~v!

1 (
j53

n22

k2~ j0p!nj
21 (

t5j12

n

(
s5j11

t21 EVtsj~u, v! dW~u! dW~v!

5 ZC 1 ZV, (A.38)

where ZV is defined in Lemma A+9 and ZC 5 (j53
n21 k2~ j0p!nj

21 (t5j11
n *Cttj ~u, v! 3

dW~u! dW~v!+ We shall showp2102@ ZC 2 C0 (j53
n21 k2~ j0p!#

p
&& 0+ Because$ct~u!% is

one-dependent, we have

EE @Cttj ~u, v!# dW~u! dW~v! 5EE6ct ~u!62 dW~u!EE6ct2j ~v!62 dW~v! 5 C0+

(A.39)
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Also, because*Cttj ~u, v! dW~u! dW~v! and *Cssj~u, v!6cs~u!62 dW~u! dW~v! are inde-
pendent unlesst 5 s, s 6 1, s 1 1 6 j, s 2 1 6 j, we have

EH (
t5j11

n E@Cttj ~u, v! 2 ECttj ~u, v!# dW~u! dW~v!J2

# Cnj + (A.40)

It follows from ~A+39!, ~A+40!, ~A+12!, and the Cauchy–Schwarz inequality that

p2102F ZC 2 C0 (
j53

n21

k2~ j0p!G
5 p2102 (

j53

n21

k2~ j0p!nj
21 (

t5j11

n E@Cttj ~u, v! 2 ECttj ~u, v!# dW~u! dW~v!

5 OP~ p1020n102!+ (A.41)

The desired result follows from~A+38!, ~A+41!, andp0n r 0+ n

Proof of Lemma A.10. Following the partition technique of Hong~1999, proof of
Theorem A+3, p+ 1215!, we first decompose ZV into the sums withj # g and j . g,
respectively:

ZV 5 S(
j53

g

(
t5j12

n

(
s5j11

t21

1 (
j5g11

n22

(
t5j12

n

(
s5j11

t21 Dk2~ j0p!nj
21EVtsj~u, v! dW~u! dW~v!

5 ZU 1 ZR1, say+ (A.42)

Next, using the fact that the sum over~t,s!, where 1# s , t # n, can be partitioned
into a sum over~t,s!, wherej , s , t # n, and a sum over~t,s!, where 1# s # j and
s , t # n, we can decompose

ZU 5 S(
j53

g

(
t52

n

(
s51

t21

2 (
j53

g

(
s51

j

(
t5s11

n Dk2~ j0p!nj
21EVtsj~u, v! dW~u! dW~v!

5 ZW2 ZR2, say+ (A.43)

Moreover, ZWcan be decomposed into the sums overt 2 s. g andt 2 s# g, respectively:

ZW 5 S(
j53

g

(
t5g12

n

(
s51

t2g21

1 (
j53

g

(
t52

n

(
s5max~1, t2g!

t21 Dk2~ j0p!nj
21EVtsj~u, v! dW~u! dW~v!

5 ZVg 1 ZR3, say, (A.44)

where ZVg is defined in Lemma A+10+ Combining~A+42!–~A+44!, we obtain ZV 5 ZVg 1
ZR1 2 ZR2 1 ZR3+ Thus, it suffices to showp2102 ZRa

p
&& 0 for a 5 1,2,3+
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We shall compute the order of magnitude forZR1 in detail; the computation of the other
reminder terms is similar+ We first write ZR1 as the sums withs 5 t 2 1 ands , t 2 1:

ZR1 5 (
j5g11

n22

(
t5j12

n

k2~ j0p!nj
21EVt~t21!j ~u, v! dW~u! dW~v!

1 (
j5g11

n22

(
t5j12

n

(
s5j11

t22

k2~ j0p!nj
21EVtsj~u, v! dW~u! dW~v! 5 ZR11 1 ZR12, say+

(A.45)

Now consider the first term in~A+45!+ Because$ct~u!% is one-dependent, Vt~t21!j ~u, v!
andVs~s21! j ~u, v! are independent unlesst 5 s, s 6 1, s 2 2, s 6 j, s 1 16, s 2 1 6 j,
s 2 2 6 j+ Hence, we have

EH (
t5j12

n E@Vt~t21!j ~u, v! 2 EVt~t21!j ~u, v!# dW~u! dW~v!J2

# Cnj + (A.46)

Also, becausect~u!ct21~u!* is independent ofct2j ~v!ct212j ~v!* for j . 2, we have

EVt~t21!j 5 2 ReEECt~t21!j ~u, v! dW~u! dW~v!

5 2*EE @ct ~u!ct21~u!* # dW~u!*
2

# C~ p1020n! (A.47)

underHn~ p1040n102!+ It follows from ~A+46!, ~A+47!, ~A+12!, and Cauchy–Schwarz in-
equality that

ZR11 5 (
j5g11

n22

k2~ j0p!nj
21 (

t5j12

n EEVt~t21!j ~u, v! dW~u, v!

1 (
j5g11

n22

k2~ j0p!nj
21 (

t5j12

n E@Vt~t21!j ~u, v! 2 EVt~t21!j ~u, v!# dW~u, v!

5 o~ p3020n! 1 oP~ p0n102!, (A.48)

where we made use of the fact thatp21 (j5g11
n22 k2~ j0p!nj

21 r 0 given ~A+12! and
g0p r `+

Next, we consider ZR12+ Given the definition ofVtsj~u, v!, we have

E ZR12
2 # 4E* (

j5g11

n22

(
t5j12

n

(
s5j11

t22

k2~ j0p!nj
21Ect ~u!cs~u!*ct2j ~v!cs2j ~v!* dW~u! dW~v!*

2

5 4 (
t5g14

n

E*Ect ~u! (
s5g12

t22

(
j5g11

s21

k2~ j0p!nj
21ct2j ~v!cs~u!cs2j ~v! dW~u! dW~v!*

2

# 4 (
t5g14

n EE6ct ~u!62E* (
s5g12

t22

(
j5g11

s21

k2~ j0p!nj
21ct2j ~v!cs~u!cs2j ~v!*

2

dW~u! dW~v!,

(A.49)
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where the equality and last inequality follow becausect~u! is independent ofcs~u!*,
ct2j ~v!, andcs2j ~v!* for t . s 2 1 andj . 2+

For the second expectation in~A+49!, we have

E* (
s5g12

t22

(
j5g11

s21

k2~ j0p!nj
21ct2j ~v!cs~u!cs2j ~v!*

2

5 4E* (
s5g12

t22

(
j51

s21

k2~ j0p!nj
21ct2j ~v!cs~u!cs2j ~v!1~t 2 j . s1 1!*

2

1 4E* (
s5g12

t22

(
j5g11

s21

k2~ j0p!nj
21ct2j ~v!cs~u!cs2j ~v!1~t 2 j , s2 1!*

2

1 4E* (
s5g12

t22

(
j5g11

s21

k2~ j0p!nj
21ct2j ~v!cs~u!cs2j ~v!1~t 2 j 5 s,s6 1!*

2

# C (
s5g12

t22

(
j5g11

s21

k4~ j0p!nj
221~t 2 j . s1 1!

1 C (
s5g12

t22

(
j5g11

s21

k4~ j0p!nj
221~t 2 j , s2 1!1 CF (

j5g11

t22

k2~ j0p!nj
21G2

+ (A.50)

Combining~A+49!, ~A+50!, and~A+12!, we obtain

E ZR12
2 # C (

j5g11

n22

k4~ j0p! 1 CnF (
j5g11

t22

k2~ j0p!nj
21G2

5 o~ p 1 p20n!

given g0p r `+ It follows that p2102 ZR12
p
&& 0 by Chebyshev’s inequality+ Similarly,

we can obtainE ZR2
2 5 O~ pg0n! and E ZR3

2 5 O~ pg0n!+ Therefore, p2102 ZR2
p
&& 0 and

p2102 ZR3
p
&& 0 giveng0n r 0+ This completes the proof+ n

Proof of Lemma A.11. The proof is exactly the same as the proof for Theorem A+4
of Hong ~1999, pp+ 1215–1217!, which applies the martingale central limit theorem of
Brown ~1971!+ The fact that$et % is one-dependent rather than i+i+d+ does not alter any
change of the proof there becausect~u!, ct2j ~v!, cs~u!, andcs2j ~v! are mutually inde-
pendent fort 2 s . g r ` and 2, j , g+ n

Proof of Theorem 4. We shall show Theorems A+7 and A+8 subsequently+

THEOREM A+7+ Under the conditions of Theorem 4,ZM~ [p! 2 M~ [p!
p
&& 0+

THEOREM A+8+ Under the conditions of Theorem 4, M~ [p! 2 M~ p!
p
&& 0+

Proof of Theorem A.7. Given that p r `, p0n r 0, p21 (j51
n21 kr ~ j0p! r

*0
` kr ~z! dz for r 5 2,4, it suffices to show

ZB 5 p2102 (
j51

n21

k2~ j0 [p!nj @6 [sj ~u, v!62 2 6 Isj ~u, v!62#
p
&& 0+

Given the conditions onk~{!, there exists a symmetric monotonic decreasing function
k0~z! of z . 0 such that6k~z!6 # k0~z! for all z . 0 andk0~{! satisfies Assumption A+5+
It follows that for any constantse,h . 0,
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P~6 ZB6 . e! # P~6 ZB6 . e,6 [p0p 2 16# h! 1 P~6 [p0p 2 16 . h!,

where the second term vanishes for allh . 0 given [p0p 2 1
p
&& 0+ Thus it remains to

show that the first term also vanishes asn r `+
Because6 [p0p 2 16 # h implies [p # ~1 1 h!p, we have that for6 [p0p 2 16 # h,

6 ZB6 # ~11 h!102 @~11 h!p#2102 (
j51

n21

k0
2@ j0~11 h!p#nj @6 [sj ~u, v!62 2 6 Isj ~u, v!62#

p
&& 0

for any h . 0 given ~A+6!, where the inequality follows from the fact that6k~z!6 #
6k0~z!6+ This completes the proof of Theorem A+7+ n

Proof of Theorem A.8. See Hong~1999, proof of Theorem 4, for ~m, l ! 5 ~0,0!!+
n
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