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We propose a new diagnostic test for linear and nonlinear time series models
using a generalized spectral approadnder a wide class of time series models
that includes autoregressive conditional heteroskedast®R{H) and autoregres-

sive conditional duratiotACD) models the proposed test enjoys the appealing
“nuisance-parameter-free” property in the sense that model parameter estimation
uncertainty has no impact on the limit distribution of the test statitis con-
sistent against any type of pairwise serial dependence in the model standardized
residuals and allows the choice of a proper lag order via data-driven methods
Moreover the new test is asymptotically more efficient than the correlation
integral-based test of Brockisieh and LeBaron(1991, Nonlinear Dynamics,
Chaos, and Instability: Statistical Theory and Economic Evidersoe Brock
Dechert Scheinkmanand LeBaron(1996 Econometric Review$5, 197—-235,

the well-known BDS testagainst a class of plausible local alternatiyest in-
cluding ARCH). A simulation study compares the finite-sample performance of
the proposed test and the tests of BB®x and Piercg197Q Journal of the
American Statistical Associatiof5, 1509-1527, Ljung and Box(1978 Bio-
metrika65, 297-303, McLeod and Li(1983 Journal of Time Series Analysis
269-273, and Li and Mak(1994 Journal of Time Series Analysi$, 627—636.

The new test has good power against a wide variety of stochastic and chaotic
alternatives to the null models for conditional mean and conditional varidhce
can play a valuable role in evaluating adequacy of linear and nonlinear time se-
ries modelsAn empirical application to the daily S&P 500 price index highlights
the merits of our approach
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1. INTRODUCTION

The development of nonlinear time series analysis has been advancing rapidly
(e.g., Subba Rao and Gaht984 Priestley 1988 Tong 199Q Brock, Hsieh

and LeBaron1991; Granger and Terasvirtd993 Tjgstheim 1994 Terasvirta
Tjostheim and Grangerl994 Terdik, 1999. In modern time series analysis

one often considers the data generating process

Y = Go(li-1) + ho(li—1) e, t=0,£1,..., (1.1)

wherel;_, is the information set available at time- 1 and{e,} is a sequence
of independently and identically distributddi.d.) innovations Often {e,}
has mean 0 and variance 1 such thgtl,_;) = E(Y;|l;-1) and h3(l,_;) =
var(Y;|l;_;) almost surelya.s). For various examples that belong to clésd),
see e.g., Tong (1990 and Granger and Terasvirtd993. It is also possible
that{e} is an ii.d. nonnegative sequence wit(e;) = 1. An example is the
autoregressive conditional duratigACD) process introduced in Engle and
Russell (1998 for irregularly spaced time serigsvhere go(l;_;) = 0 and
ho(li_1) = E(Y;|1;_1) is the conditional duration of the nonnegative time dura-
tion procesgY,}.

Various models forgy(-) and hy(-) have been proposed in the literature
Consider a model

Y =9(l—1,0) + h(l_,,0)e(0), (1.2)

whereg(-,6) andh(-,0) are some known parametric specifications dgt-)
andhy(-), # € © is an unknown finite-dimensional parameter vecaod{e,(6)}

is an unobservable seriedpecification(1.2) covers most commonly used linear
and nonlinear time series modeExamples include ACDautoregressive con-
ditional heteroskedasticityARCH), autoregressive moving averagdRMA ),
bilinear, nonlinear moving averagélarkov regime-switchingsmooth transi-
tion, exponentialand threshold autoregressive mod&heng(-,0) andh(-,0)
are correctly specified fogy(-) andhg(-), i.e., when there exists sontg € ©
such thatg(-,60) = go(-) andh(-,6y) = ho(-) a.s, the model standardized
error seriede(6y)} coincides with the true innovation serigs} and therefore
is i.i.d. In contrast if g(-,#) is inadequate fogy(-) and/or h(-,#) is inade-
quate forhy(-), i.e., if there exists n@ € O such thatg(-,6) = go(-) and/or
h(-,0) = ho(-) a.s, {&(0)} will be serially dependent for ah € . Conse-
quently to test adequacy of mod¢l.2), one can check whether there exists
somed, € O such that{e,(6y)} is i.i.d. Tests for ii.d. rather than for white
noise are more suitable and useful in nonlinear time series analygiarticu-
lar when higher order conditional moments or the conditional probability dis-
tribution are of intereste.g., Brock et al, 1991; Brock, Dechert Scheinkman
and LeBaron 1996 Christoffersen 1998 Diebold Gunthey and Tay 1998
Kim, Shephardand Chil 1998 Clement and Smith200Q Elerian Chib, and
Shephard2001). See also an empirical application in Sectian 8
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Becaus€e (0y)} is unobservableone has to use the standardized estimated
residual

& =Y —g(iy,0l/n(1,6), t=1...n, 1.3)

whered is a consistent estimator @f based on a random sampg !, of
sizen and|, is the observed information set available at petigbat may in-
volve certain initial valuesTo construct an asymptotically valid test proce-
durg it is important to examine whether and how the usé¢éf;_, rather than
{e = e(0y)}1- affects the limit distribution of a test statistizesides its power
property(see Tj@stheim1996.

Often the information set,_, consists of lagged variabl€¥;_,j > 0}.
Whengy(l;_1) is linear inl;_;, Y; is called linear in conditional mean dp
(Leg White, and Grangerl993. If in addition hy(l;_1) = o a.s, {Y;} is called
completely linear inl,_; (Granger 2001, Granger and Leel999. Assuming
ho(l;—1) = o a.s. in an ARMA framework Box and Piercg1970 and Ljung
and Box(1978 propose a diagnostic test for an ARNIpy, o) model

p
BPL(P) = n(N+2) X (=) %)) > X2 (pprar P> Po+ o,

j=1
(1.4)

where p(j) is the sample autocorrelation function &} ,, & = Y, —
g(li—1,6), and g(l,_,,0) is an estimated ARMApPo,qo) model Here {&} is
the usual estimated residuals because no conditional variance estimation is
involved The degrees of freedom of the Box—Pierce—LjBL) test depend
on po + qo, the number of the estimated parametéteng (1996 and Paparo-
ditis (2000a 2000h propose spectrum-based diagnostic tests that generalize
the BPL(p) test

It has been pointed out for a long tinfe.g., Granger and Anderspri978
Grangey 1983 that the Box—Pierce—Ljung test has no power against nonlinear
dependencies with zero autocorrelatieuch as some bilinear and nonlinear
moving-averagé€MA) processedJsing the sample autocorrelation function of
squared residugldvicLeod and Li(1983 suggest a test for linearity against
unspecified nonlinearityFor a null ARMA( po,qg) mode| the McLeod and Li
(1983 test statistic is

p
ML (p) = n(n+2) 3 (n=)"*53(]) 5 x7, (1.5)

i=
where p,(j) is the sample autocorrelation function @?};_, andé& = Y, —
g(l,_1,6). This test has good power against ARCIHalso has power against
departures from linearity that have apparent ARCH structurbs null limit
distribution of the test statistic is;aé distribution the degrees of freedom need
not be adjusted when only an ARMA model is estimatdd pointed out in
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Granger and Terasvirtd 993, ML (p) is asymptotically equivalent to the La-
grange multiplier test for ARCH of Englel982.

When testing the adequacy of an AR@¥tneralized autoregressive moving
averageGARCH) model many researchers have applied the McLeod—Li test
to the squares of the estimated standardized residliasnd Mak (1994 show
that this procedure is misleading because its asymptotic distribution is yfot a
distribution if ML(p) is applied to the residuals standardized by estimated
ARCH/GARCH models Li and Mak (1994 propose corrected statisticin
fact, their test is asymptotically equivalent to the Lagrange multiplier test pre-
sented in Lundbergh and Terasvi(te998, which is a test of the standardized
errors being.i.d. against the alternative that they follow an ARCH model
and Mak (1994 also provide a simpler statistic when the fitted conditional
variance model is ARCK). For a null ARMA( py, qo)-ARCH(r) model the
simpler version of Li and Mak’s test statistic can be written as

P
LM(p,r)=n(n+2) > (n—)p3(j) B2, p>r, (1.6)

j=r+1

where p,(j) is the sample autocorrelation function dé?}i_,, & =
[Y; — g(l_1,0)]/h(I;_1,0), and h(i;_1, ) is an estimated ARCH) model
The null limit distribution depends on the order of the ARCH modeWhen
other conditional variance models are estimatbeé test statistic itself has to
be modified as suggested by Li and M&k994) or by Lundbergh and Teras-
virta (2002.

Brock et al (1991 1996 propose a diagnostic test for moddl2), using
chaos theory

BDS(m d) = n¥2[C,(d) — C,(d)™]/V,¥2, (1.7)

where the sample correlation integfaf. Grassberger and Procacci®83

2 n t—1 m-1
Cn(d) = e —& | <d
(d) n(n—1>t=§+1§m,=o (l& — &l <d)
m—1
5P II e — el <d)|=Cy(d), (1.8)
j=0

1(-) is an indicator functionm is the so-called embedding dimensiahis a
distance parameteand V,, is an asymptotic variance estimatdihe statistic
C(d) measures the fraction of pairs of historiés ;, & }j’i})l that are within
distanced of each otherlf & andé are close in valueso will be subsequent
pairs for a chaotic process but not for and sequenceThus BDS(m,d) is
expected to have good power against chioaddition it also has power against
a wide range of stochastic dependent procesBesee thisobserve that when
{&} is i.i.d., we have
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Cn(d) = Cy(d)™ (1.9)

for all positive integersn and all distanced > 0. In other wordsthe correla-

tion integralC,,(d) behaves like the characteristic function of a serial string in
the sense that the correlation integral of a serial string is the product of corre-
lation integrals of component substrings C,,,(d) # C,(d)™, there is evidence
against the.i.d. hypothesisand BDS will gain powef

As shown in Brock et al(1991, Ch. 2 and Appendix ), BDS(m,d) has the
appealing “nuisance-parameter-free” property that aHy-consistent param-
eter estimato® has no impact on its null limit distribution under a class of
conditional mean modely( -, #). This, together with good power against a wide
range of dependent alternativésms made BD8n,d) a convenient and power-
ful diagnostic tool for nonlinear time series moddishas been recommended
by Brock et al (1991) as a portmanteau lack of fit test for nonlinear time series
models in the same spirit as Box and Jenkib87Q p. 29) recommend Box—
Pierce—Ljung’s test for linear time series models

NeverthelessBDS(m,d) has certain features one might consider undesir-
able First, the “nuisance-parameter-free” property holds only under condi-
tional mean models but not under ARCH modét$. Brock et al, 1991,
Appendix D. More generally when conditional variance estimation is in-
volved the limit distribution of BDSm,d) depends on the nature of estimator
6, and how to modify the test statistic is unknowihis is troublesome in
practice Second although serial independence impli€s8), the converse is
not true (Brock et al, 1991, p. 47). There are examples in whidlg} is not
i.i.d. but (1.8) holds For such alternativesBDS(m,d) may have no power
Also, BDS(m,d) involves the choice of two parametersa-andd. Both mand
d are fixed but arbitraryBecausem — 1 is actually the largest lag order used
BDS(m,d) has no power against alternatives for which serial dependence in
{&} occurs only at the lag orders equal to or larger tinarideally, a proper
choice ofmshould depend on the alternatjwehich, howeveyis unknown when
serial dependence ¢&} is of unknown form Similarly, some choice ofl may
render BDSm,d) inconsistent against certain alternativ@$ere exists no
rule guided by chaos theory for choosing parameteendd, although Brock
et al (1991) have recommended a simple rule of thumb based on their simula-
tion study Moreover as shown in Section, BDS(m,d) has suboptimal power
against some local alternativeSor exampleit can detect a local ARCH)-
type alternative with parametric rate /2 but a local MA(1) alternative with
raten— Y4 only.

In this paperwe propose a new diagnostic test for time series météa),
using a generalized spectrum proposed in HObgR9. The test enjoys the
“nuisance-parameter-free” property of the BDS test under a wider class of time
series modelswvhich include but are not restricted to ARCH and ACD models
It is consistent against any type of pairwise serial dependence across various
lags in the model standardized residuagproperty not attainable by the BDS
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test It can detect a class of local alternatives with a rate slightly slower than
the parametric rate” %2 but much faster than~¥4 This class includes both
MA and ARCH-type local alternative§inally, generalized spectral smoothing
allows one to choose a lag order via data-driven methetiech are more ob-
jective than an arbitrary choice or a “rule of thumb” and thus give more robust
power A simulation study compares the proposed test and the tests of BDS
Box—Pierce—Ljungand McLeod-LfLi—Mak in finite samples The new test
has reasonable power against a wide variety of stochastic and chaotic alterna-
tives to the null modeldt is a useful addition to the existing diagnostic tool kit
for time series modelg¢see BarnejtGallant Hinich, JungeilgesKaplan and
Jensenl1997). An empirical application to the daily S&P 500 index highlights
the merits of the proposed te$t/e emphasizehowevey that our procedure is
best viewed as a complement rather than a substitute to the BDSvtesh is
motivated from an interesting chaotic thedry

It should be pointed out that there are a variety of nonparametric tests for
serial dependence in the literatuféhese include the tests of Chan and Tran
(1992, Cameron and Trived{1993, Delgado (1996, Hong (1998, Pinkse
(1998, Skaug and Tjgstheirl 9933 1993h 1996, and Robinsor{1991). All
of these tests are based on observed raw data rather than on estimated standard-
ized residualsWhether and how the limit distributions of these tests will change
when applied to estimated standardized residuals has not been investigated
this paperwe do not consider how to adapt these tests to estimated standard-
ized residualgé}.

2. A NEW DIAGNOSTIC TEST

Hong (1999 proposes a generalized spectrum as an analytic tool for linear and
nonlinear time seriesSuppose the time seridg,} is strictly stationaryThe
basic idea of Hon@1999 is to consider the spectrum of the transformed series
{e'} whereu € R = (—o0,00). Define

o;(u,v) = cov(e e"ei), i=+-1,j=0,%1,..., (2.1)
the covariance betweest'® ande®-i, Straightforward algebra yields
a;(u,v) = ¢;(u,v) — p(U)@(v), (2.2)

where ¢;(u,v) = E[e'™@™& )] and ¢(u) = E(e"®) are the joint and
marginal characteristic functions d#,e_;).> Thus oj(u,v) = 0 for all

(uv) € R? if and only if ¢ and e_; are independent Suppose
SURu,er? 2| 0j(U,0)| < oo, which holds whenfor example {e} is a
stationarya-mixing process with the mixing coefficientsy(j)} satisfying
SZoal(j)” V" < oo for somer > 1. Then the Fourier transform af, (u,v)

exists
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f(w,u,v) = i Ui(u,v)efij“’, w € [—m,m7]. (2.3)

1
2 j=—o0

No moment condition ode} is required When vaKe,) exists however the
negative partial derivative df(w,u,v) with respect tau,v) at (0,0) yields the
conventional spectral density

9%t (w,u,v 1 2 )
- % =5 2 R(j)e
udv 00 27 =
whereR(j) = cov(e, &_;). For this reasori(w,u,v) is called in Hong(1999
a “generalized spectral density” ¢&}. The introduction of parametelsi,v)
offers much flexibility in capturing serial dependence{éy}. The generalized
spectrunt (w, u,v) can capture any type of pairwise dependence across various
lags in{e}, including those with zero autocorrelatior&earching over the do-
main of (u,v), for example one can find the “maximal dependence”{ef} at
each frequencw, as given by

S(w) = sup [f(w,u,v)], w € [—m, ],
(u,0)ER?

where|-| is the Euclidean normThis maximal spectral dependence may be
contributed from linear or nonlinear serial dependencéeji A generalized
spectral peak at some frequency will indicate a cys&asonalityor periodic-
ity due to nonlinear dependenteg., volatility clustering when{e} is a white
noise®

The generalized spectruf{w,u,v) differs from the well-known higher
order spectrawhich are the Fourier transforms of higher order cumuldcts
Brillinger and Rosenblatt1967a 1967h Subba Rao and Gabht98Q 1984
Terdik, 1999. It does not require any moment condition enThis is appeal-
ing becausefor example it has been argued that many high-frequency eco-
nomic and financial time series have infinite varian¢eg., Fama and Ro]l
1968 Pagan and Schwertt990. It can effectively capture any pairwise
serially dependent process@scluding ARCH with zero third cumulant$or
such ARCH processeshe bispectrum—the Fourier transform of third-order
cumulants—will miss themWe note however that f(w, u,v) cannot capture
dependent processes that are pairwise serially indepeficene, ande,_; are
independent for any nonzejobut {g} is serially dependeitwhich may or
may not be captured by the bispectrutnwould be interesting to compare the
generalized spectrum and the bispectrum thoroudphiythis is beyond the scope
of this paper and should be pursued elsewhere

When{eg} is i.i.d,, f(w,u,v) becomes a flat generalized spectrum

fo(w,u,v) = % oo(u,v), w € [—m,m7]. (2.4)
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Any deviation off (w,u,v) from fy(w, u,v) is evidence of serial dependence of
{e}. To test the .i.d. hypothesis fo{e }, Hong (1999 suggests that one com-
pare two consistent estimatorsfdiv, u,v) andfy(w, u,v) via anL,-norm Define

gi(uv) = ¢(uv) = ¢(u,0)¢Ov), j=0+1...,+(n—1), (2.5)

where

n
(n—j)t 3 etatay jfj=o,
¢ (u,0) = = (2.6)

(n+j)t > elaima jfj <o,
t=1—j

Note thatg;(u,v) = ¢_;(v,u). A kernel estimator fof (w, u,v) can be defined as

n—1

flou) = == 3 A= [i/mYK(i/p)6 e @.7)

27 i I1q
wherek: R — [—1,1] is a symmetric kernel angd = p, is a bandwidth(or lag
orden such thatp — oo, p/n — 0 asn — co. Examples ofk(-) include the
Bartlett Daniell, quadratic-spectrahnd truncated kernelg.g., Priestley 1981,
p. 441). The factor(1 — |j|/n)¥? is a finite-sample correction factor that de-
livers a better approximation to the finite-sample distributidre also have a
consistent estimator fdp(w, u,v):

. 1
fo(w,u,v) = Py ao(u,v), w € [—m,m]. (2.8)

Let W:R — R* be a nondecreasing function such tiat(u) = w(v) exists
and is symmetric about, @vith [ dW(u) = fw(u) du < co. Examples ofW(-)
are the cumulative distribution functions 6f(0,1), double exponentialand
uniform distributions’” Then a test for theiid. hypothesis ofe,} can be based
on a properly standardizdd,-norm

T n—1
nwﬂ | f(w,u,0) — fo(w,u,0)|? do dW(U) dW(v) — Cy > k2(j/p)
—a j=1

I\7I(p) n-2 1/2
szwwﬂ
j=1

n—-1 n-1
> K2(j/p)(n = )] 6;(u,0) |2 dW(U) dW(v) — C5 X k2(j/p)
j=1 i=1

02 1/2 ’
[ZDo > k“(i/p)}
i=1

(2.9)
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where the second equality follows from Parseval’s idendifyu,v) = 6_;(v, u),
symmetry of weighting function&(-) andw(-). Moreover the centering and
scaling factors have the following values

2
Co= U&o(u,—w dW(u)] , (2.10)

2
Do = { | 60(u,v)|2 dW(u) dW(v)] ) (2.11)

Throughout unspecified integrals are taken over the entire Euclidean space of
proper dimensionThe test statistidVi(p) involves one- and two-dimensional
numerical integrations with respect to,v), which can be implemented using
e.g., Gauss—Legendre quadraturbte thatM(p) involves no numerical inte-
gration over frequencw, which has been integrated out as a result of the use
of the L,-norm Divergence measures rather than thenorm could be used

but they would generally involve numerical integrations oweand also over
(u,v), and the distribution theory might be different al#0oGAUSS code for
computingM ( p) with p chosen via a data-driven method is available from the
authors

3. ASYMPTOTIC DISTRIBUTION

We now derive the null limit distribution of1(p) and establish its “nuisance-
parameter-free” property under a wide class of time series model®wing
are regularity conditions

Assumption Al {Y,} is a strictly stationarya-mixing process with
S0al(j)" V" < oo for somer > 1.

Assumption A2. nY2(6 — 6,) = Op(1), wheref, = plim(6).

Assumption A3. Let I, be the pseudo information set from tinte
to the infinite past and le®, be a small convex neighborhood @f.
The functionsg(l,-) and h(l,,-) are twice continuously differentiable
with respect t0§ € Oy a.s, with Esupee,|h *(l,,0)(0/30)g(l;,0)]"
ESU@EG)OHhil(lt’0)(8/60)h(|t’9)”4’ ESU@E®0|‘h71(|t,0)(62/602)g(|t,0)”2,
Esupee,lh™*(1;,0)(0%06%)h(1;,60)|?, and Esupee,[&'(f)] all bounded
by some constan® € (0,c0), wheree (0) = [Y; — g(l;_1,0)]/h(l;_4,0).

Assumption A4. Let I; be the observed information set available at time
that may involve certain initial value3hen
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I h(l;,0) — h(i,0)
lim Esup|——— | =C
im 2 € supl = )
and
) .
_ g(l,0) — g(l,0)
lim E su - =C
im 2 € sup| = )

Assumption A5. k: R — [—1,1] is symmetric about O and is continuous
at 0 and all points inR except a finite number of pointsvith k(0) = 1,
IS k?(2)dz < oo, |k(2)| = C|z| P asz — oo for someb > 2 andC & (0,0).

Assumption A6. W:R — R* is nondecreasing such that the derivative
W’(u) = w(u) exists and is symmetric about @ith [* dW(u) < oo and
2 u*tdW(u) < co.

Assumption A7. Do = [[|oo(u,v)|2dW(u) dW(v)]? > 0.

These are conditions on the data generating prode&®) {V;}, model pa-
rameter estimato#, initial value conditions modelsg(-,6) and h(-,6), and
weight functionsk(-) andW(-). In Assumption Al, we permit but do not re-
quire varY;) < co. An example with vafY;) = o is the integrated GARCH, 1)
procesg Engle and Bollerslevi986. In Assumption A2, we permit but do not
requireé to be a quasi—-maximum likelihood estimathee and Hanserl994
Lumsdaine 1996. Any n¥2-consistent estimatdf suffices Assumption A3 is
a standard condition on the conditional mean and conditional variance models
We require that the fourth moment of the standardized egrexist

Assumption A4 is a start-up value conditiot ensures that the impact of
initial values(if any) assumed ir, is asymptotically negligibleThis condition
easily holds for many time series models illustrate thiswe first consider an
invertible MA(1) modelY; = au;_; + u;, whereu; = oe,{e} isi.i.d.(0,1), and
|a| < 1. Here we haveg(l,_1,0) = au;_, andh(l,_4,0) = o, whered = (o, o).
Furthermorewe havel,_; = {Y;_1,...,Y,Yo,...} andl_y = {Yi_q,..., Y1, Uo},
where(, is some assumed valye.g., 0y = 0) for uy. The condition orh(-,-)
holds trivially, so we focus on the condition ai(-,-). By recursive substitu-
tion, we obtain

g(ltfl,a) - g(rtfl,a)
t—1 . ) t—1 ) )
= |: (—1)J1aJYtj+atuo—Z(—l)JlalYtj—atCIo:|.
j=1 j=1
It follows that

g(ltfl’ 0) - g(l/\tfl’ 0)
h(ly_1,0)

<) t + 0
T e
t

=1 0€0Oq g

n
> E sup
t=1

€O,

provided|a| < 1,0 < o < o0, E|e| < o0, andE|(p| < co.
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Next we consider a GARCH,1) modet Y, = eh,, whereh? = o +
ah_, + BYZ,. Here we havel_; = {Y_1,....,Y,Y,,...} and [_; =
{Y,_1,...,Ys, 3}, wherehZ is an assumed valu@.g., h3 = 1) for initial vari-
anceh?. In this caseg(l;_1,6) = 0 so the condition omy(-,-) holds trivially.
By recursive substitutignwve have

t—2
h2(l_1,0) —h2(l,_1,0) = w + B >, Y2, + Ba' *h2(1o,0)
j=0

t—2
—w—B X al¥Z Bat"1h3.
i=0
It follows that

n h(l,_1,0) — h(ﬂl,m‘
E su =
2 E sup h(l_1,6)

providedw > 0,0< a, 8 <1, a + B < 1, andE(h3) < co.

In Assumption A5, the constant governs the rate at which the kernel
k(z) — 0 asz — oo. For kernels with bounded suppdeg., the Bartletf Parzen
Tukey, and truncated kernelsb = co. For the Daniell kernel and quadratic-
spectral kerneb = 1 and 2 respectivelyAssumption A7 ensures that the choice
of W(-) does not lead to a degenerate test statistic

Ba*[h2(10,6) + R3] _ _

w

= > E sup
t=1

€6,

THEOREM 1 Suppose Assumptions A.1-A7 hold and=pcn* for
X € (0,1) and cE€ (0,00). Then if{e,} is i.i.d., M(p) > N(0,1) as n— .

Throughout all the proofs are collected in the Appendix the proof of
Theorem 1 we find that the use of ang/2-consistent estimatat rather than
6, has no impact on the limit distribution d¥(p). Thus M(p) enjoys the
same “nuisance-parameter-free” property as the BDS test but under a wider
class of time series models—the “nuisance-parameter-free” property holds
under ARCH models foM(p) but not for BDSm, d).

4. CONSISTENCY

Next we establish the consistency Mf(p) under the alternative to thei.d.
hypothesis

THEOREM 2 Suppose Assumptions A.1-A.7 hold ard@* for A € (0,1)
and c€ (0,00). Then as n— oo,

o] —-1/2
(PYn)M(p) > [ZD(JO k4(2) dz]
X wffw | f(w,U,0) — fo(w,U,0)|2 dw dW(u) dW(v)

e —1/2 o
={2D0J; k‘%z)dz} 2 |o (u,0)]> dW(u) dW(v). (4.1)
j=1
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Supposee; and e_; are not independent at some Igg> 0. Then
[loj(u,v)|2dW(u) dW(v) > 0 for any weighting functio®(-) that is positive
monotonically increasingand continuous with unbounded support®nrhere-
fore, M(p) is consistent against any type of pairwise dependence fotany
satisfying the aforementioned conditioifie examples o#V(-) include the cu-
mulative distribution functions dN(0,1), double exponentialand Student’s,
distribution with » = 5. Thus we expect thaitVi(p) has relatively omnibus
power against a wide variety of alternativé&ecause thé.,-norm in(4.1) is
positive whenever there exists pairwise serial dependence at any nonzero lag
M(p) is an asymptotically one-sided(0,1) test Upper-tailed asymptotic crit-
ical values(e.g., 1.645 at the 5% levelshould be used

The choice ofW(-) for M(p) may not be as important as the choice of dis-
tance parametat for BDS(m, d), because the latter can render B@$d) in-
consistent against some alternativés contrast any W(-) that is positive
monotonically increasingand continuous with unbounded support &nal-
ways ensures consistency WF(p) against any type of pairwise dependence
across various lags ife;}. Neverthelessthe choice ofW(-) might have impact
on the power oMM (p) in finite samplesWe investigate this in our simulation
that follows Our results show that a variety of choicesWf-) have little im-
pact on the level and power &1 (p), whereas the choice af has significant
impact on the level and power of B, d).

5. ASYMPTOTIC LOCAL POWER

Local power analysis is insightful for the power property of a.tAstnoted by
Tjgstheim (1996, it is rather difficult to do asymptotic local power analysis
in the context of nonparametric testing for serial dependeRoe simplicity,

we consider a class of local alternatives for which there exists only first-order
serial dependence ifg } and the joint probability density dfe;, e _4) is

Hy(an) : f1n(X, y) = fo() fo(Y)[1+ a,9(X, y) + ry(X, )1, (5.1)

wherefy(-) is a marginal probability density,(-,-) is a remainder that may
rise from the asymptotic expansionfef(-,-), anda, — 0 asn — oo is the rate
at whichH,,(a,,) converges to theiid. hypothesisTo ensure thaf,(-,-) is a
valid joint density we make the following assumption

Assumption A8. (i) 1+ a,g(x,y) + ro(x,y) = 0 for all (x,y) € R? and all

n=1; (i) fg(x y)fo(X)fo(y) dxdy= 0 and [r,(x,y)fo(X)fo(y) dxdy = O
for all n = 1; and (i) [g*(x,y)fo(X)fo(y)dxdy < co and [ri(x,y) X

fo(x) fo(y) dx dy= o(ap).

Note thatfy(-) is the marginal density ofe;} when{g} is i.i.d. andg(-,-)
characterizes the type of serial dependencéejih The condition onr,(-,-)
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ensures that the remaindgf(-,-) has no impact on the limit distribution of
M(p) underH,(a,). Two examples off,(a,) are an MA(1) process

€ = ang_1 t+ & (5.2)

and an MA conditional heteroskedasti®IACH (1); Yang and Bewley1995
process

& = e\1+aedy, (5.3)

wheree, is i.i.d. N(0,1). Herg g(x,y) = xy for (5.2) andg(x,y) = (x? — 1) X
(y2 —1) for (5.3).

THEOREM 3 Suppose Assumptions A.1-A.8 hold andq’ for A € (0,3)
and ¢ € (0,00). ThenM(p) % N(u,1) under H,(p¥4n¥2) as n — oo,
where the noncentrality

%) —1/2
u=[2Do f k‘%z)dz} J 16906 y) 150 ) a2 dwt) aww).

Whenevemg(x,y) # 0, we haveu > 0 providedW(u) is positive monoton-
ically increasingand continuous with unbounded support®nConsequently
M(p) has nontrivial power againgi,(pY*/n'?). The ratep”*/n*? is slower
than n~%2, becausegp — o asn — oo. This is the price one has to pay to
achieve consistency against any type of pairwise serial dependefep idow-
ever it is faster thann™v*4 given p/n — 0. If p « log(n), then p¥4/nY? «
n~Y2log¥4(n), which is nearly the same as “2 If p o« n¥5, as is the case
with the data-driven method described subsequently for some commonly used
kernels p¥4/nY2 o« n=¥2+1/20 which is only slightly slower tham~ Y2 We
note that the use d# }{_, rather than{e };-, has no impact on the asymptotic
local power ofM(p) (see Theorem /& in the Appendi¥, so the conclusion of
Theorem 3 also applies to the tests considered in H&A§9, where no local
power analysis was given

It is of interest to compare the asymptotic local powekitfp) and BDSm, d).
For simplicity we consider BD®,d) under a subclass dfl,(a,) where
g(x,y) = g1(x)g,(y) for some functiong, : R — R such thatf g, (x) fo(x) dx= 0,
| =1,2. We find that BDS2,d) has nontrivial power undeii,(a,) if the limit
noncentrality

lim VR[C,(d) — C4(d)2] # 0. (5.4)

Straightforward algebra shows that und&g(a,) with g(x,y) = g:(x)g,(y),
we have
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ca) - )2 = [[[[ 10x-x 1< iy -yi<a)

X f1n(X, ¥) f1n(X', y') dx dx dy dy

2
| J[a0x=y1 < i tmaxey
= 22, [ 10x-y1 < g0 (0 () axay

% [[[20x = yI < Dy o0 oty axay

2
cad] [[10-v1< a00mm o axc]

+ o(a2), (5.5)

wherefq,(-) denotes the marginal density @funderH,(a,,), which may not be
the same a$(-), the marginal density o& when{e} is i.i.d. If the first term
in (5.5) is identically 0 for alln, the asymptotic local power of BO3,d)
will depend on the second termhich renders BD&,d) only able to detect
H,(n"%¥#). This occurse.g., when the marginal densifiy(-) is uniform? Alter-
natively, suppose thak(x) = (27) 2 exp(—3x?), andg,(-) is an odd function
forl=21or2i.e,

g(=x) = —g(x) forallxeR, andforl=1o0r2 (5.6)

Then the first term in5.5) is identically O for alln, because the integral

[ 10x=y1 < Dty aya 01000 0x

x+d
I () dyg (0103 dx

x+d
f f (27) V26~ Y72 dyq (x) (27) V2e X7 dx
x—d

dr2 2,2
= W—lff g(y—2e ¥+ dydz

—d/2
=0 forl=1or2 (5.7)

where the third equality follows from changes of variable and the last one fol-
lows from (5.6). Note that the MA1) process in(5.2), whereg,(x) = x and
g-(y) =y, satisfies condition(5.6) and the MACH?1) process in(5.3), where
01(x) = x2 — 1 andg,(y) = y? — 1, does not satisfy conditiofs.6). Thus
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BDS(2,d) can detect MACH1) with raten—2 but MA(1) with raten~%* only.
This explains why it is often found in practice that B&d) has excellent
power against ARCHe.g., Brock et al, 199]). Note that a local MACHY1) is
equivalent to a local ARCKL).

6. CHOICE OF DATA-DRIVEN BANDWIDTH

Both BDS(m,d) and M(p) involve the choice of lag orden — 1 or p. Brock
et al (1991, based on simulation experimentecommend some simple rule
of thumb thatm be small for finite sample size®©ur generalized spectral
smoothing provides a data-driven method to choms&hich, to some extent
lets data themselves speak for a propéor M(p). Before discussing specific
data-driven methodave first justify the use of a data-driven lag order\We
impose a Lipschitz continuity condition dd(-), which rules out the truncated
kernelk(z) = 1(]z| = 1) but it includes most commonly used kernels

Assumption A9. For anyx,y € R, |k(x) — k(y)| = C|x — y| for some
constantC € (0,0).

THEOREM 4 Suppose Assumptions A.1-A.7 and A.9 hold fani$ a
data-driven bandwidth such tha/p = 1 + Op(p~(¥/2£7D) for somep >
(2b — 2)/(2b — 1), where b is as in Assumption A.5=pcn* with A € (0,1),
and ce (0,00). Then if{e.} is i.i.d., M(p) — M(p) = 0 andM(p) % N(0,1)
as n— oo.

Thus as long a9 converges t@ sufficiently fast the use ofp rather than
p has no impact on the limit distribution d¥(p), an additional “nuisance-
parameter-free” propertyrhis extends the results of Hoi@999 to the esti-
mated standardized residuals of mo@eR).

Theorem 4 allows for a wide range of admissible ratespfoDne plausible
choice ofp is the plug-in method considered in HotiP99, which minimizes
an asymptotic integrated mean square e(tbISE) criterion for the estimator
f.(-,-,-) in (2.7). This method is described as followGonsider the “pilot” es-
timators based on a preliminary bandwigth

_ 1 nl _ ;
fo(w,u,v) = Py > @ 1il/mY2k(j/p)di(u,v)e e, (6.1)
T j=1-n
_ 1 1 _ .
fi?(w,u,v) = o > (A= [jl/mY2k(j/p)6;(u,)|j|%ee, (6.2)
T j=1-n

wherek: R — [—1,1] is a kernel not necessarily the same as the kekfel
used in(2.7). For examplek(-) can be the Bartlett kernel wherek6) is the
Daniell kernel Note thatf,(-,-,-) is an estimator fof (-,-,-) andf{9(.,-,.) is
an estimator for the generalized spectral derivative
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1 . ,

f@(w,u0) = 5= > aj(uv)]jl%e e (6.3)
2 j=—o0

The plug-in bandwidth is then defined as

Po = Con/at D, (6.4)

where¢, is the tuning parameter estimator given by

1/(2q9+1)

2q(k@)2 ff,ﬁ [ 9 (w,u,v)|? do dW(u) dW(v)

€o = f: k2(z) dz f [Jf_n(w,U,—u)dW(u)]zdw
: o .
sy > (= DRI 16wl aww) awee
fz K2(2) dz j_”gn(n —iDR2Ci/p) U&j(u,_u)dw(u)]z
(6.5)

Note that the second equality {6.5) follows from Parseval's identity

The data-driverf, still involves the choice of a preliminary bandwidf
which either can be fixed or can grow with the sample sizéf p is fixed,
Po still grows at raten'/?3*Y in general but ¢, does not converge to the opti-
mal tuning constanfThis is analogous in spirit to a parametric plug-in method
Hong (1999 shows that wheip grows withn properly the data-driven band-
width po in (6.4) minimizes an asymptotic IMSE df,(-,-,-).° Note thatp, is
real-valued One can take its integer paend the impact of integer-clipping is
expected to be negligibl&he choice ofp is somewhat arbitraryput we expect
that the choice of is of secondary importance and may have no significant
impact onM( po). This is confirmed in our subsequent simulation

7. MONTE CARLO EVIDENCE

We now compare the level and powerlﬁf( fo), BDS(m,d), the Box—Pierce—
Ljung test BPL(p), the McLeod-Li test ML(p), and the Li—-Mak test LMp,r),

in finite samplesWe check adequacy of two basic time series models-+AR
and ARCHr)—for r = 1,4, respectivelyWith the null AR(1) model we exam-
ine the level of the testgheir power against a variety of neglected dynamics
and nonlinearities in conditional meaand their power to distinguish AR)
from a chaotic alternative that has the same autocorrelation structure(@s AR
With the null ARCH(1) model we examine the level of the testheir power
against misspecification in conditional variandkeir power to distinguish
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ARCHY(1) from nonlinearities in mean that result in apparent ARCH structures
and their power to distinguish ARGH) from a chaotic process that behaves
like a white noise but has similar autocorrelations in squares to ARLHFi-

nally, the null models AR4) and ARCH?4) allow us to examine the impact of
parameter estimation uncertainty on the level of the proposed tests when the
parameter dimension increas&ich impact is asymptotically negligible but
might be significant in finite samples

7.1. Testing Conditional Mean Model

We first examine the adequacy of an AR modet
Model A: Y,=a+bY_,te, t=1,...,n,
under each of the following DGP

DGP A0 (AR(1))

Y, = 0.6Y,_; + &.

DGP A1 (AR(2))

Y, = 0.6Y,_; — 0.5Y,_, + &,.

DGP A2 (ARMA (1,1))

Y, = 0.6Y,_, + 0.5¢,_; + &,.

DGP A3 (Bilinear)

Y, = 0.6Y_; + 0.7Y,_,&_ ;1 + &.

DGP A4 (Nonlinear MA)

Y, = 0.6Y,_; + 0.78,_ 180 + &.

DGP A5 (Threshold AR TAR)

y 0.6Y,_4+&, ifY. ;<1
Y71 -05Y,_, e, ifY.,=1
DGP A6 (Markov Regime-Switching
0.6Y_,+¢g, ifS=0,
Y] -05Y,_,+teg, fS=1

whereS is a latent state variable that follows a two-state Markov chain with
transition probabilitie(§ =1|S_, =0 =P(§S=0/S_1=1) =0.3.
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DGP A7 (Sign AutoregressiveSIGN)
Y, = sign(Y,_;) + osy, o =043
where sigrix) = 1(x > 0) — 1(x < 0).
DGP A8 (Tent Map

[ A ifo=Y._,<aq,
- tA-Y.y), ifasY. ,=1

wherea = 0.49999 andy, is generated from the uniform distribution pd 1].

In DGPs A0-A.7, {&} is i.i.d.(0,1). DGPs Al and A2 are used to check the
power of tests against neglected dynamics in meard DGPs A3—A.6 are
used to check against various neglected nonlinearities in ni®aRs A3 and
A.4 are not invertible but they are second-order statigraghown in Granger
and Andersen{1978 pp. 90-9J). The SIGN model examined in Granger and
Terasvirta(1999, DGP A7, is a first-order nonlinear autoregressive process
but has the same autocorrelation function as an(lARprocess p(j) =
(1 — 291, whereq = P(og; < —1) = P(og, > 1) wheneg, is symmetric
Following Granger and Terasvir{d999, we chooser = 0.43 so thaig = 0.01
if & isN(0,1). The tent mapDGP A8, is a deterministic chaotic procedsut it
resembles in autocorrelation an AR process with the AR coefficient®2— 1
(see Sakai and Tokumari980. The DGPs A7 and A8 allow us to examine
how a test can distinguish an AR model from nonlinear stochastic and cha-
otic processes that behave like a linear process in terms of autocorrelation

7.2. Testing Conditional Variance Model

Next, we examine the adequacy of an ARCH model

ModelB:  Y,=he, hZi=a+bY%,, {g}~iid(01), t=1,...,n,
whenY; is generated from the following generating processes

DGP BO (ARCH(1))

Y, = he, h?=09+0.1Y2,.

DGP B1 (ARCH(2))

Y, = hey, h?=0.1+ 0.1Y2, + 0.8Y;2,.

DGP B2 (GARCH(L,1))

Y, = hey, h?=0.1+0.1Y2, + 0.8hZ ;.
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DGP B3 (EGARCH(1,1))

Y, = h; g, INh2=0.01+0.9Inh? ; + 0.3(|g_4| — (2/m)¥?) — 0.8¢,_,.
DGP B4 (Stochastic Volatility

Y, =he, hZ=0.1Y2,+exp(eInhZ,+uv,),

{v;} ~i.i.d. N(O,1), ¢ =0.98

DGP B5 (Bilinear)

Y, = 0.8Y_,8_1 t &.

DGP B6 (TAR)

y 0.8Y ;1 +s&, Y.<
vl -05Y,_,;+e&, Y, =1

DGP B7 (Nonlinear MA)
Y, = 0.8¢2 , + &,.

DGP B8 (Logistic Map
Yo = 4Ya (1= Yioy),

whereYyj is generated from the uniform distribution §@y 1].

In DGPs B0-B.7, {&;} isi.i.d.(0,1). The DGPs Bl-B.4 are used to examine
the power of the tests against misspecification in conditional varidnd@GP
B.4, parameter value = 0.98 is empirically relevantHarvey Ruiz, and Shep-
hard (1994 obtain estimates ap in range of 09575-09948 for four different
daily foreign exchange rateshe DGPs B5—B.7 allow us to examine the power
to distinguish ARCH from a variety of nonlinearities in mean that result in ap-
parent ARCH structuresSuch distinction has important implications in prac-
tice (Weiss 1986 Bera and Higgins1997 Diebold 1986. DGP B8, the logistic
map behaves like a white noise but has similar autocorrelations in squares to
ARCH(1) (e.g., Granger and Terasvirtd993 p. 34). It is used to examine the
power of a test to distinguish ARCH from a chaotic process with similar auto-
correlations in squaresrom the results of He and Terasvitl999, we note
that{Y;} does not have finite fourth moments under DGR Bven wher{e}
is i.i.d.N(0,1). However {Y;} has all finite moments under DGP®Bwhen{s}
is i.i.d.N(0,1), but vany;) is infinite when{e} is i.i.d.ts (see Nelson1991).
We conjecture that vdl,) is also infinite when{e;} is an ii.d. sequence of
mixed normals Note that strict stationarity holds under both DGP4 Bnd
B.3. On the other handGPs B5 and B7 are not invertiblgbut they are second-
order stationarysee Granger and Andersel®78 pp. 90-9).
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7.3. Testing Higher Order Models

We now examine the impact of parameter estimation uncertainty on the level
of the proposed test®Ve examine how the level of the tests is affected by
increasing the number of estimated paramet8ush impact is asymptotically
negligible but might be significant in finite samplé&e consider the following
two higher order models under the null hypothesis

First, we consider the adequacy of an AR model for the conditional mean

4
ModelC  Y,=a+>bY. j+e, t=1..,n,
=1

under the following DGP
DGP CO (AR(4))
Y, = 0.9[0.4Y,_; + 0.3Y,_, + 0.2Y,_3 + 0.1Y,_,] + &, {&} ~1.i.d.(0,2).

Next, we consider the adequacy of an AR@H model for the conditional
variance

4

i=1

{g} ~i.i.d.(0,1), t=1,...,n,
whenY, is generated from the following DGP
DGP DO (ARCH(4))
Y, = h; g, h?=0.1+ 0.9[0.4Y2, 4+ 0.3Y2, + 0.2Y;25 + 0.1Y2,],
{e} ~1.0.d.(0,2).

For all the DGPs except the chaotic process@sahd B8, we use the GAUSS
Windows version random number generator to generaté innovations
{&;} from four distributions (i) N(0,1); (ii) exponential (iii) mixed normal
Ple; ~ N(=3,1)] = P[e; ~ N(3,1)] = 0.5; and(iv) Student’sts. All the g, have
been rescaled to have mean 0 and variand&e generata + 1,000 observa-
tions for{e;} under each of the distributior{§)—(iv) and then discard the first
1,000 to alleviate the impact of using some initial valuée report the levels
of the tests under all four error distributigri®ut for space we report the power
under the normal error only

7.4. Monte Carlo Evidence

To compute the test statistid( py), BDS(m, d), BPL(Ap), ML (p), and LM(p,r),
we use the usual residual serigs= Y, — & — bY,_, from Model A and
& =Y, — a- Zf:1 Bth_,- from Model C estimated by the ordinary least
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squares methgdand the standardized residual serégs= Y,/h, where ﬁtz =
a+ bY2, from Model B andh? = 4+ 3", b, Y2, from Model D, estimated by
the quasi—maximum likelihood method with a Gaussian likelihood function

For the generalized spectral telt(f,), we use Daniell kernek(z) =
sin(7rz)/mz, which enjoys the optimal power property over a class of kernels
(Hong 1999 Theorem 5.1° To examine the impact of the choice of prelimi-
nary bandwidthgp on the level and power dfi(f,), we considep = 1-1Q
To investigate the impact of the choice of weight functMfi-) on the level
and power ofM (), we consider the three distribution functior® N(0,1),
(ii) double exponentialand (iii) ts-distribution They are all scaled to have
mean 0 and variance 1

For BDS(m,d), Brock et al (1991) recommend using in range 050—150
andm in range 2-5for n = 500-1000Q whereo? = var(Y,). To examine the
impact of the choice of embedding dimensiomon the level and power of
BDS(m,d), we usem = 2—-11 which is equivalent to the choice of a lag order
p from 1 to 10 As some DGP may have no finite varianege consider three
choices of distance parameter= 0.5, 0.25, 0.125 in the unit of data range
For normal random samplethese choices roughly correspond t@,2r, and
0.50, respectively

For the Box—Pierce-Ljung tesBPL(p), we usep = 2-10 for Model A
(p = 1 cannot be chosen because of the adjustment of the degree of freedoms
for its asymptotic distributionandp = 1-10 for Model B

For the McLeod-Li test MI(p), which is suitable to test AR) models
we usep = 1-10 for Model A For the Li—Mak test LM p, r), which is suitable
to test ARCHr) models p = 2-10 for Model B(similarly to BPL(p) for
Model A, p = 1 cannot be chosen here for LM, r) whenr = 1).

To examine the levels of the tests under the nulARnodel and under the
null ARCH(1) mode] we estimate Model A and Model B under DGROAand
DGP B0, respectivelyWe consider the empirical level at the 10%%, and
1% significance levels fon = 100 and 200Qusing asymptotic critical values
and 1000 Monte Carlo iterationsTo conserve spacd-igures 1 and 2 only
report the levels of the tests at the 5% level fior 100 Similarly, to examine
the levels of the tests under the null M model and under the null ARCH)
mode| we estimate Model C and Model D under DGR0OGnd DGP DO, re-
spectively and report the results in Figures 1 and 2 dfso

To examine the powers of the tests against various misspecifications of the
AR(1) model we report in Figure 3 the powers of the tests under DGHs-A
A.8, each of which is fitted by an AR) model To examine the powers of the
tests against various misspecifications of the AROHnodel we report in Fig-
ure 4 the powers of the tests under DGR$-H.8, each of which is fitted by an
ARCH(1) model The power is level-adjusted by using the empirical critical
values obtained under DGPsMand BO, respectively which provide a fair
comparison among the tests under stut¥e only report the power at the 5%
level, for n = 100 and normal errorge,}, using 1000 replications
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Ficure 1. Size of testing conditional mean at 5% levela-DGP A.0: AR(1)-N(0,1),
(b) DGP A0: AR(1)—exponential (c) DGP A.0: AR(1)-mixed normal (d) DGP A.0:
AR (1)—ts.

In Figures 1—4the levels or powers dfl( fi), BDS(m,d), BPL(p), ML (p),
and LM(p,r) are plotted as functions @ m— 1, p, p, andp in the horizontal
axis respectivelyln each graphthere are three plots fvl( ) in solid lines
denoted as M(l = 1,2,3), that correspond to three weight functiond-)—
the distribution functions oN(0,1), double exponentiabndts. There are also
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Ficure 1. Size of testing conditional mean at 5% levele)-DGP CO: AR (4)-N(0,1),
(f) DGP CO: AR(4)—exponential(g) DGP CO: AR(4)—mixed normal (h) DGP CO:
AR (4)—ts.

three plots for BD$m,d) in dashed lingsdenoted as BOS(l = 1,2,3), that
correspond to three distance parameter valugs=0.5'. Moreover ML (p) or
LM (p,r) is plotted in dotted lingsand BPL(p) is plotted with more closely
spaced dotsThe test ML(p) is reported in Figures 1 and Shere the usual
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FIGURE 2. Size of testing conditional variance at 5% leveb-DGP B0: ARCH(1)—
N(0,1), (b) DGP B0: ARCH(1)—exponential (c) DGP B.0: ARCH(1)—mixed normal
(d) DGP BO: ARCH(1)—ts.

estimated residuals are usead LM(p,r) is reported in Figures 2 and where
the standardized estimated residuals are used

We first examine the levels in Figures 1 and\V®e observe the following
patterns

1. Overall the levels of the test!ﬁl(ﬁg), BPL(p), and ML(p) under the null AR1)
model and the levels of the test4( pg), BPL(p), and LM(p,r) under the null
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N(0,1), (f) DGP D.0: ARCH(4)—exponential (g) DGP D.0: ARCH(4)—mixed normal
(h) DGP D.0: ARCH(4)—ts.

ARCH(1) model are more or less reasonahléereas the level of BD®n, d) ap-
pears not very satisfactarfhe unsatisfactory level performance of B@$d)
under the null ARCH1) model may be due to its violation of the “nuisance-
parameter-free” property under the ARCH model

. The level ofM(po) is robust to the choice of weight functiof(-) and prelimi-

nary bandwidthp. The levels of BPI(p) and ML(p)/LM (p,r) are excellent and
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Ficure 3. Size-corrected power of testing conditional mean at 5% level-BGP A 1:
AR(2)-N(0,1), (b) DGP A2: ARMA (1,1)-N(0,1), (c) DGP A3: bilinear-N(0,1),
(d) DGP A4: nonlinear MA-N(O,1).

robust to the choice of lag order On the other handhe level of BDSm,d) is
sensitive to the choices of distance paramdtand embedding dimensian. The
fact that BDIm,d) is sensitive tan whereasl\?l(f:o) is not sensitive t@ indicates
the practical merit of the data-driven choice of lag orfigfor M( po).

3. M(po) displays somenot excessiveunderrejection under the null AR) with
normal errors or soménot excessiveoverrejection under the ARCH) model
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Ficure 3. Size-corrected power of testing conditional mean at 5% leve]-BGP A5:
TAR-N(0,1), (f) DGP A.6: Markov switchingN(0,1), (g) DGP A7: SIGN-N(0,1), (h)
DGP AS8: tent map

with exponential and mixed normal errof3n the other handhe level distortion
of BDS(m,d) is quite large especially under the mixed normal errpvghich is
consistent with the findings of Brock et.dll991, p. 50).

4. The level patterns of each test under the null(ARmodel and the null ARCIKL)

model are more or less similar
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FIGURE 4. Size-corrected power of testing conditional variance at 5% level—
(8 DGP B1: ARCH(2)-N(0,1), (b) DGP B2: GARCH(1,1)-N(0,1), (c) DGP B3:
EGARCH-N(0,1), (d) DGP B4: stochastic volatilityN(0,1).

5. The preceding four observed level patterns for the null models oflIARNd
ARCH(1) carry over to the higher order null models of A and ARCH4). This
indicates that model parameter estimation uncertainty does not affect the level of
the tests at least for the models and sample sizes considered
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FIGURE 4. Size-corrected power of testing conditional variance at 5% level-BGP
B.5: bilinear-N(0,1), (f) DGP B6: TAR-N(0,1), (g) DGP B7: nonlinear MA-N(0,1),
(h) DGP B&: logistic map

In Figures 1 and 2 we consider the levels of the tests under an AR coefficient
of 0.6 for DGP A0 and the levels of the tests with an ARCH coefficient dif O
for DGP B.0. We have also experimentédot reported with a variety of coef-
ficient values 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and Q9 in both cases
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We note that the fourth moment df does not exist when the ARGH) coef-
ficient value is larger than or equal tq/ﬂ/? = 0.577 for DGP BO. In most
scenarios the levels ofM(p,), BDS(m,d), BPL(p), and ML(p)/LM (p,r)
are generally robust to the values of the @Rand ARCH1) coefficients in
DGP A0 and DGP B0. One exception is BP(p), which tends to overreject
under the null AR1) model when the AR coefficient is close to(day 0.9) in
DGP A0 and lag ordep is small but its level becomes reasonable for larger
lag ordersp, say p > 5.

We now examine the powers of the teste be fair in comparison and to
take into account the BD@&, d)’s violation of the “nuisance-parameter-free”
property under the ARCH) model we use empirical critical value§Ve first
examine the powers of the tests against various misspecifications of &) AR
model as reported in Figure.3Ve observe the following patterns

1. The power ofM( ) is generally not sensitive to the choice of the preliminary
bandwidth(or lag ordey p. The power of BD$m, d) seems sensitive to the choice
of the embedding dimensiom, which is equivalent to the choice of a lag order
The tests BPLp) and ML(p) are also sensitive to the choice of lag orgein
some cases

2. The power oﬂ\?l(ﬁo) is robust to the choices of weight functiovi(-), whereas the
power of BDSm,d) is sensitive to the choice of distance parameter

3. (@) The autocorrelation test BRIp) has excellent power against AR,

ARMA (1,1), and SIGN alternatives to the AR) model Neverthelessas ex-
pected BPL(p) cannot detect the nonlinear alternatives—bilineemlinear
MA, TAR, and Markov regime-switchingt also cannot distinguish AR)
from the tent mapwhich resembles an AR) process in autocorrelation but is
completely deterministic

(b) The correlation in squares te$dL (p), has good power against bilineaon-
linear MA, Markov regime-switchingand tent map alternatives to the AR
model However it has low power against AR), ARMA (1,1), TAR, and SIGN
alternatives

(c) BDS(m,d) has good power against bilineamonlinear MA and tent map al-
ternatives to the ARL) model However it has low power against ARMAL 1),
TAR, and SIGN alternatives

(d) The generalized spectral teBt(f,) has excellent power against AR,
ARMA (1,1), bilinear, TAR, SIGN, and tent map alternatives to the AR
model And it has moderate power for Markov regime-switching and low power
for nonlinear MA alternatives

4, Overall I\7I(f)0) has reasonable omnibus power against all linear and nonlinear de-
pendent alternatives except for nonlinear MAoreover it is more powerful than
the other tests in many cases

Next, we examine the powers of the tests against various misspecifications
of the ARCH(1) model as reported in Figure.AVe observe the following
patterns
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1. As in testing misspecifications in conditional me#me power ofM( o) is robust
to the choice of the preliminary bandwidtbr lag ordey p in most casesThe
power of BDSm, d) is sensitive to the choice of the embedding dimensioithe
tests BPI(p) and LM(p,r) are also sensitive to the choice of lag orgeén some
cases

2. The power ofVI( fp) is robust to the choices of weight functiti(-), whereas the
power of BDSm,d) is sensitive to the choice of distance parameter

3. (a) The correlation-based test BPp) has low power against ARCE),

GARCH(1,1), EGARCH(1,1), stochastic volatilitybilinear, nonlinear MA and
logistic map alternatives to the ARGH models These alternatives are either
martingale difference sequences or serially uncorrelated procétsesver
BPL(p) has good power to distinguish TAR from ARCH.

(b) The correlation-in-squares teshe Li—Mak test, LM (p,r), is most powerful
against ARCH?2), for which it has good power by its desigNevertheless
LM (p,r) has low power against other forms of conditional heteroskedastic
alternatives to ARCIKl), such as GARCKl,1), EGARCH(1,1), and stochas-
tic volatility models Moreover it cannot distinguish ARCKL) from bilineat
TAR, nonlinear MA and logistic map procességdany of these nonlinear con-
ditional mean models have similar moment structures to ARGHN partic-
ular, the logistic map behaves like a white noise but has similar autocorrelations
in squares to ARCKL) (cf. Granger and Terasvirtd993 p. 34).

(c) BDS(m,d) has poor power against bilinedtAR, and nonlinear MA alterna-
tives to the null ARCH1) model This finding is consistent with the findings
of Brooks and Heravi1999, who document that BD@n,d) is a fairly poor
discriminator of bilinear and TAR processes from ARCH procesSesh dis-
tinctions have important implications in terms of predictability in economics
and finance(e.g., Bera and Higgins1997 Weiss 1986).

(d) M(po) has high power against EGARQH1) and stochastic volatility alter-
natives to the ARCK) model It has high power to distinguish ARCH)
from bilinear TAR, nonlinear MA and logistic map processdsterestingly
M(ﬁo) has better power than BB, d) against the logistic map alternative

4. Overall the generalized spectral telt(po) has omnibus power against all alter-
natives except for GARCH,1). For the GARCHZ1,1) alternative to ARCHL),
all the tests have low or little powein most casesM ( fi,) is the most powerful

8. EMPIRICAL APPLICATION

To further highlight the merits of our generalized spectral, t@stnow apply it

to evaluate an empirical financial time series modesl is well known practi-

cal model-based financial decision making such as hedgisig management
and option pricing will be satisfactory only if it builds on reasonable specifi-
cation of the underlying asset price procesdasan important contributian
AndersenBenzonj and Lund(2002 use efficient method of momentEMM)

of Gallant and Taucheri1l996 to evaluate the adequacy of a variety of
continuous-time parametric models for the daily S&P 500 equity index and the
impact of different specifications on option pricirithe EMM method is based
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on the expectation of the score function of a discrete-time auxiliary semi-
nonparametric model that adequately approximates the conditional distribution
of the discretely sampled data in an asymptotic sefiseattractive feature of
EMM is that it is generally applicable and achieves the same efficiency as the
maximum likelihood estimator when the score function of the auxiliary model
asymptotically spans the score function of the true conditional distribudone-
over, the EMM criterion function can be used to construct an overall test of the
overidentifying restrictions on the parametric model to be tesiad the fit of
individual scores can be used to gauge how well the parametric model captures
particular features of data

In their EMM applications to the S&P 500 indeAnderson et al(2002),
based on some model selection critedhoose the following auxiliary model
for the daily S&P 500 price changes

YI:¢O+¢1ut—l+ut’ ut:h’[eh {et}NIId' (0’1)7 t:]-"n’n’
p q
Inh? = o+ ZB] In htzfj + <1+ > Qj Ll)[eletl+ 0>(le—1| — Ele4[)],
j=1 j=1

where the density ofe,} is approximated by Hermite polynomialhe ii.d.
property for{e} is obtained as a consequence of using some model selection
criteria This model is referred to as MA)-EGARCH(p,q), as in the work of
Andersen et al(2002, who estimate the model in two stemss the first-order
autocorrelation iY;} is largely “artificial,” induced by nonsynchronous trad-
ing effects they filter out this effect before estimating the conditional vari-
ance'? Herg we adopt the same conditional mean model—{A—but we
estimate it jointly with the conditional variance model via the quasi—maximum
likelihood method We maximize the log likelihood for the generalized error
distribution described in Nelsoi1991). Table 1 reports our quasi—-maximum
likelihood estimation of the MA-EGARCH models for both the whole sample
(1953-199% and the subsampld980-1996 For comparisonwe also include
the estimation results in Anderson et @002.

Anderson et al(2002 find that an MA(1)-EGARCH(1,1) model can ade-
quately capture the full serial dependence in the daily S&P 500 equity index
changes from 0402/1953 to 1231/1996 (with n = 11,076), and an MA1)-
EGARCH(2,1) model can adequately capture the full serial dependence in
daily changes of the S&P 500 index from /@R/1980 to 1231/1996 (with
n = 4,298). In both casesthe density of the.i.d. errore, is approximated by a
Hermite polynomial expansion

The adequacy of the full dynamics of the auxiliary semi-nonparametric model
for {Y;} is crucial for the efficiency of the EMM estimator and the validity of
the related EMM diagnostic testslthough a semi-nonparametric model is as-
ymptotically free of model misspecification from a theoretical point of view
the use of some model selection criteria might lead to a misspecified model in
practice It is therefore important to check if the aforementioned MA
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TAaBLE 1. Estimates of MA1)-EGARCH models for S&P 500 index changes

01/02/1953-1231/1996(n = 11,076 01/03/1980-1231/1996(n = 4,299
MA (1)-EGARCH(1,1) MA (1)-EGARCH(2,1)
This paper Andersen et.al This paper Andersen et al

Parameter Estimate B Estimate FE. Estimate FE. Estimate FE.
bo 0.0357 00063 00331 00142 Q0421 00109 —0.0398 00398
b1 0.1447 Q0116 — — 00318 00151 — —
® —0.0084 Q0019 43769 11249 —0.0090 00041 26724 04565
ay —0.4750 00666 —-0.4391 00635 05537 02479 05712 01559
B1 0.9887 00023 09893 00022 Q0508 00277 00388 00199
B2 N.A. N.A. N.A. N.A. 0.9268 00269 09213 00183
01 —0.0997 00137 —0.1581 00195 —0.0472 00194 —0.0916 00234
0, 0.2259 00290 02973 00280 01268 00329 02011 00340
v 1.3750 00446 NA. N.A. 1.2793 00569 NA. N.A.
MeanL —1.0616 —1.1949

Note: The results of Andersen et.aR002 are taken from their Table Il for the whole samglE953-1996 and from their Table VII for the subsamp(@980-1996. Summary
statistics of the data are also provided in Andersen.€2802 Table I). They estimate the model in two steps with MIA estimated separately from the conditional variance model
(instead of jointly and do not repor#;. In this paper we estimate the mean and variance models joirith log-likelihood for the generalized error distributi@®ED), normalized

to have zero mean and unit varianead the expression &|e,_,| can be found in Nelso(1991). MeanL = n"* >, logL, is the mean log-likelihood is a parameter for the GED
distribution and SE. is the estimated robust standard error
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EGARCH models indeed completely capture the full serial dependence in the
daily S&P 500 index dataAnderson et al(2002 note that the standardized
estimated residuals of these models pass Box—Pierce—Ljung typetestew
check the adequacy of these NIA-EGARCH models by using our new pro-
cedure For comparisonwe also report the results for BPp), LM (p,r), and
BDS(m,d) tests Our results confirm that these models do pass the B,P
LM (p,r), and BDSm,d) tests but our new test finds very strong evidence of
model misspecification missed by the BAl), LM (p,r), and BDSm,d) tests

Figure 5 reports the-values of the proposed telt( po), BPL(p), LM (p,r),
and BDSm, d) tests We reportM (i) only with the normal cumulative distri-
bution function(c.d.f.) as the weighting functigndenoted adV, in Figure §
becauseVl (o) is robust to the choice of the weight functiondowever we
still report BDSm, d) with three choices of distance parametérs 0.5, 0.25,
and Q125 in unit of data rangedenoted as BDS BDS,, and BDS, respec-
tively. As LM (p,r) is computed for the standardized residuals witf_1, 6)
an estimated EGARCH modéhot ARCH(r)), its asymptotic distribution is
not ,\/g_r and is unknown to usThus we report the bootstrap-values in addi-
tion to the asymptotip-values'® The bootstragp-values are expected to pro-
vide more reliable inferences for all the tests

We first consider the results for the whole sample from 1953 to 13@6é
Figures 5a and 5b We report asymptotic and bootstragpvalues forM,,
BPL(p), and LM(p,r). We do not report BD8n,d) for the whole sample
because we use the prograaccompanied by the book by Brock et 1991,
that can handle only up to500 observationsThe M, test has zero asymptotic
and bootstrap-values In fact, the M, statistic values range from I38to 145
when the preliminary lag ordgy changes from 21 to 50 and the Parzen kernel
is used and they range from 18 to 143 whenp changes from 21 to 50 and
the Bartlett kernel is used'he BPL(p) test has large asymptotic and boot-
strap p-values ranged approximately from 10% to 25%ell above the con-
ventional 5% levelThe LM(p,r) test s